
perf_events status update

Stéphane Eranian
Google, Inc

CSCADS workshop
Lake Tahoe, CA

August 2011

Agenda

● Intel Sandy Bridge support
● AMD Interlagos support
● Intel offcore_response support
● uncore PMU support
● cgroup monitoring support
● perf tool update
● libpfm4 update

Supported HW

● AMD64
○ K8, Barcelona, Shanghai, Istanbul (Magny-Cours?)
○ Fam15h: Bulldozer (core PMU)
○ Fam14h: Bobcat (AMD Fusion)

● Intel X86
○ P6, Core Duo/Solo, Netburst (P4)(2.6.35)
○ Atom, Core, Nehalem/Westmere, SandyBridge
○ any processor with architected perfmon (PMU)

● ARM
○ ARMV6 (1136,1156,1176)
○ ARMV7 (cortex-a8, cortex a9)

● IBM Power

● Alpha processors (EV67 and later)

New PMU Hardware

● Intel Sandy Bridge
○ 8 generic counters (4 with HT on)
○ full width counter writes (48-bit wrmsr)
○ PEBS Precise distribution (PDIR)
○ PEBS Precise store
○ PEBS Load Latency (LL) covers TLB and Lock
○ extended OFFCORE_RESPONSE events
○ uncore PMU

● AMD Fam15h processor (Bulldozer)*

○ 6 core counters
○ Lightweight Profiling (LWP)
○ distinct uncore PMU
○ event scheduling constraints

* based on LKML patches posted by AMD (see http://lkml.org/lkml/2011/2/15/123)

Support for Intel Sandy Bridge

● support added in 2.6.39
○ generic event mappings
○ event scheduling
○ regular PEBS (incl LBR)

● offcore_response: limited support (2.6.39)

● PEBS-LL: patch under LKML review

● PEBS-ST: patch under LKML review

● PEBS-PDIR: partial support (2.6.39)

● uncore PMU: patch under LKML review

Support for AMD Fam15h (Bulldozer)

● core PMU support in 2.6.39
○ implements event scheduling constraints
○ mapping of generic events

● No LWP support yet
○ kernel xsave/xrstor patches from AMD: LKML review
○ rest of support can be encapsulated into user library

● no uncore PMU support yet

PEBS memory access sampling

● PEBS-LL: load latency (NHM/WSM/SNB)
○ samples location of load cache misses
○ must use event MEM_TRANS_RETIRED.LOADS
○ collect: instr addr, data addr, latency, data src, L2TLB, lock
○ latency cycle filter (LD_LAT MSR)
○ machine state at retirement of load
○ still has off-by-1 error on instr

● PEBS-ST: precise store (SNB only)
■ samples location of store misses
■ must use event MEM_TRANS_RETIRED.STORES
■ collect: instr addr, data addr, L2TLB hit, L1D hit, lock
■ machine state at retirement of store
■ still has off-by-1 error on instr

PEBS memory access sampling

● proposed perf_event abstractions (patch by Lin Ming @ Intel)

● new generic hardware events:
○ PERF_COUNT_HW_MEM_LOAD
○ PERF_COUNT_HW_MEM_STORE

● latency filter
○ attr->config1

● mem access infos requested via attr->sample_type:
○ ld/st addr: PERF_SAMPLE_IP
○ data addr: PERF_SAMPLE_ADDR
○ latency: PERF_SAMPLE_LATENCY

● data src via PERF_SAMPLE_EXTRA:
○ abstracted: MEM_LOAD_L1, MEM_LOAD_L2,MEM_LOAD_LOCAL...

perf mem proposal

● Lin's patch adds perf mem

$ perf mem -t load record make -j8
$ perf mem -t load report

Memory load operation statistics
================================
 L1-local: total latency= 28027, count= 3355(avg=8)
 L2-snoop: total latency= 1430, count= 29(avg=49)
 L2-local: total latency= 124, count= 8(avg=15)
 L3-snoop, found M: total latency= 452, count= 4(avg=113)
 L3-snoop, found no M: total latency= 0, count= 0(avg=0)
L3-snoop, no coherency actions: total latency= 875, count= 18(avg=48)
 L3-miss, snoop, shared: total latency= 0, count= 0(avg=0)
 L3-miss, local, exclusive: total latency= 0, count= 0(avg=0)
 L3-miss, local, shared: total latency= 0, count= 0(avg=0)
 L3-miss, remote, exclusive: total latency= 0, count= 0(avg=0)
 L3-miss, remote, shared: total latency= 0, count= 0(avg=0)
 Unknown L3: total latency= 0, count= 0(avg=0)
 IO: total latency= 0, count= 0(avg=0)
 Uncached: total latency= 464, count= 30(avg=15)

Intel OFFCORE_RESPONSE event

● analyze memory traffic from core's point of view
○ can filter on type of memory request/response
○ core PMU event

● programming: config + counter + filter
○ filter uses extra MSR (shared when HT on in NHM/WSM)
○ filter programming: 216 combinations (NHM/WSM), 37 bits on SNB!

● perf_events support
○ must manage HT shared registers
○ must encode event + filter

● abstracted offcore events
○ LKML: do not expose raw offcore, must abstract first!
○ WSM/NHM: subset mapped to generic cache events

OFFCORE_RESPONSE (cont'd)

● LL-read-access
○ offcore_rsp:dmnd_data_rd:unc_hit:other_core_hit_snp:other_core_hitm

● LL-read-miss
○ offcore_rsp:dmnd_data_rd:io:rem_dram:local_dram:remote_cache_fwd

● LL SNB mappings missing
○ documentation issues mostly

● no RAW access

● not good enough for NUMA breakdown
○ need local vs. remote traffic
○ patch proposed by Zijlstra with new generic cache events

Support for SNB PDIR sampling

● PEBS skid (applies to any PEBS event)
○ N cycles of shadow when PEBS is armed
○ Z instructions may retire during that window
○ may bias the sample distribution
○ period P => effective period = P + Z
○ Z varies depending on executed code

● Precise Distribution Instruction Retired (PDIR)

○ mitigates the PEBS skid
○ works only when sampling retired instructions
○ must use INST_RETIRED:PREC_DIST event

● perf_event support:
○ users must ensure only event on PMU
○ should set attr->exclusive => clash with NMI

watchdog

Generic stall events

● two new generic PMU events:
○ PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
○ PERF_COUNT_HW_STALLED_CYCLES_BACKEND
○ no clear definitions

● LKML: definitions not needed, high correlation good enough
○ counts do not have to be precise
○ but: how do you associate a cost then?

Multiple PMUs support

● major code restructuring in 2.6.37
○ manage multiple distinct PMUs simultaneously
○ events inside group must be from the same PMU

● required for uncore PMUs support

● how to identify PMU to encode event?
○ each PMU => unique id in attr->type
○ use sysfs, e.g., uncore:

 /sys/bus/event_source/devices/uncore/type
 /sys/bus/event_source/devices/ibs_op/type

● LKML: extend sysfs to expose basic event encoding
○ /sys/bus/event_source/devices/uncore/events/cycles
○ usage: perf stat -a -C 0 -e uncore:cycles

Intel uncore PMU support

● NHM/WSM
○ 1 fixed counter (uncore clock ticks)
○ 8 generic counters (44 bits)

● monitoring of very low level memory traffic
○ sample correlation to core or program impossible

● interrupt-based sampling has issues with C-states

○ uncore PMU interrupt not delivered to C-sleeping cores
○ cannot lose interrupt => counter wraps around

● Lin Ming @Intel patch provides counting only

○ uses hrtimer to avoid wrap around counting issues
○ raw mode access for uncore events allowed

Per-container monitoring

● resource container (cgroup)
○ cpuset, mem, scheduling

● can now monitor execution inside a specific cgroup:
○ ex: perf stat -a -e cycles -G foo -- sleep 1

● extension of system-wide
○ on each cpu, monitoring is active only when running a thread

that belongs to the monitored cgroups

● cgroup specified via fd from cgroupfs:
○ fdc = open("/dev/cgroup/foo", O_RDONLY)
○ fd = perf_event_open(&attr, fdc,0,PERF_FLAG_PID_CGROUP, 0)

● upstream since 2.6.39 (contributed by Google)

Still missing

● taken branch sampling
○ leverage LBR on Intel

● Intel NHM/WSM/SNB uncore (desktop SKUs)
○ patch under review

● AMD IBS (AMD contributing)
○ patches just posted by Robert Richter @ AMD
○ patch looks very good, should get in quickly

● ability to capture machine state (regs) on interrupt

● ability to control multiplexing rate (use hrtimers)

● improved event scheduling (maximize PMU usage)

● Intel X86: unhalted_reference_cycles event

perf tool

● Curses-based GUI (NEWT toolkit)
○ not very useful

● cgroup support
○ perf stat -e cycles -G foo -a -- sleep 1

● perf report --symfs
○ point to dir with unstripped

libpfm4

● helper library to map event names to event encoding

● libpfm4-1.0 released
○ git repository: perfmon2.sf.net

● restructured code to support OS API attributes:
○ ex: INST_RETIRED:period=2000000:c=1:i

● memory usage improvements
○ 37% size reduction on Intel X86 memory usage

● �more HW support
○ all X86 processors, IBM Power, SPARC, ARM Cortex A8/A9

● patch for perf tool posted but still not integrated by maintainer

Conclusion

● improved PMU HW support in kernel

● lots of kernel patches coming to close the gaps

● perf tool still needs a lot of improvements

