
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

CScADS Workshop on Tools 2011

LLNL-PRES-xxxxxx

Towards Rapid Development of
Component Tools at LLNL

Todd Gamblin
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

Leveraging existing research work at LLNL is done
frequently,

 Ph.D. students typically work on small research tool projects
• Need specific functionality very quickly
• With more Ph.D. students, assisting all of them with the development

work becomes less feasible.

 Typical performance tool requires a lot of extra coding
• Measurement infrastructure

— PMPI, profilers, hardware counters, timers
• Tracking layers (MPI Requests, Datatypes, etc)
• Actual research work is a very small part

 Building all these tools can be the most time consuming part
• Research tools aren’t extensively tested, tools are buggy

— Many spend time debugging others’ tools
• Often made to work for one machine, one set of benchmarks, one app
• Not many students know how to write a good build system

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

We are adopting three frameworks to enable more
rapid

1. Using PNMPI for tool integration
• Enables us to reuse PMPI measurement modules
• Allows modules to talk to each other
• Can rapidly build/test PMPI modules without

writing custom shim layer

2. Modular build system
• Using CMake for tool builds
• Pain of finding, linking, patching PnMPI modules

is greatly reduced.

3. Wrapper generator for PMPI libraries
• Extended existing MPE wrapper generator
• Added lists, expression language
• Working on more semantic information in the

API

wrap.py

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

 PMPI interception of MPI calls
• Used by many MPI tools
• Limited to a single tool

Quick Tool Prototyping with PNMPI

Application
MPI Library

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

 PMPI interception of MPI calls
• Used by many MPI tools
• Limited to a single tool

Quick Tool Prototyping with PNMPI

Application
PMPI Tool 1
MPI Library

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

 PMPI interception of MPI calls
• Used by many MPI tools
• Limited to a single tool

 PNMPI virtualized PMPI
• Multiple tools concurrently
• Dynamic loading of tools
• Configuration through text file
• Tools are independent
• Tools can collaborate

Quick Tool Prototyping with PNMPI

Application
PMPI Tool 1
PMPI Tool 2
MPI Library

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

 PMPI interception of MPI calls
• Used by many MPI tools
• Limited to a single tool

 PNMPI virtualized PMPI
• Multiple tools concurrently
• Dynamic loading of tools
• Configuration through text file
• Tools are independent
• Tools can collaborate

 Transparently adding context
• Select tool based on MPI context
• Transparently isolate tool instances

Quick Tool Prototyping with PNMPI

Application
PMPI Tool 1
PMPI Tool 2

MPI Library

Switch

PMPI Tool 4PMPI Tool 3
PMPI Tool 5PMPI Tool 5

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

 Data structure: dense matrix
• Row and column communicators
• Additional global operations
• Standard profiles aggregate data

 Need to profile separately
• Potentially different operations
• May lead to separate optimization
• BUT: don’t want to rewrite profiler

 Switch module to split communication
• Create three independent tool stacks
• Apply unmodified profiler (mpiP) in each stack
• Transparent to profiler, application & MPI library

Example: Optimizing an FPMD Code

Columns

R
ow
s

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

PNMPI allows PAVE tools to be factored into
modules and run concurrently

 We are able to leverage existing
communication measurement for
PNMPI
• BG/P network counter module
• Request, datatype tracking modules

 Allows application-specific analysis
with minimal additional work
• Using existing modules is as simple

as adding lines to a configuration file
• Don’t need to modify PMPI code

 Building and integrating new
modules can be painful

PNMPI Interception Framework!

MPI Library!

Torus/Mesh Topology Attribution!

Datatype Tracking!

MPI Communication Measurement!

Application!

MPI_Status Tracking!

MPI_Request Tracking!

Hardware Network Counter Measurement!

Existing, reused modules New code

Pcontrol Instrumentation!

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

We use CMake to streamline our build process
 Finding packages and modules on large systems is

difficult
• Aren’t detected easily by other tools if not part of the

system
• Writing portable, custom m4 for autotools can be painful
• Keeping versions, LD_LIBRARY_PATHs straight is painful

 Finding external packages built with CMake is easier
• CMake allows projects to export key build information
• Modules simply tell other modules where to find libraries

and headers, rather than requiring the user to do this
• Exporting this information in CMake is very easy

 Integrates well with dot kits on LLNL machines
• Should also integrate with modules (untested)

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

Building PNMPI Modules with Make vs. CMake
 Makefile shown at right:
• Requires 4 environment

variables to be set by user
• User must know how to

write rules to patch PnMPI
modules manually

• User needs platform-
specific knowledge of
linking shared libraries

• User manually writes
wrapper generator rules

 None of this is difficult if you
are experienced with builds
• BUT, it can be very tedious
• Requires build/link/tool-

specific knowledge

include $(PNMPIBASE)/common/Makefile.common

MOD = virtual.so

MPISPEC = mpi_pnmpi

#MPISPEC = mpi_def

WRAPDIR = ../../wrapper

PROTOFILE = $(WRAPDIR)/$(MPISPEC)_proto

FCTFILE = $(WRAPDIR)/$(MPISPEC)_fct

WRAPPERC = wrapper_c.w

WRAPPERH = wrapper_h.w

WR = ../../wrappergen/wrappergen

CFLAGS += -I$(PNMPI_INC_PATH) -fPIC

CCFLAGS += -I$(PNMPI_INC_PATH) –fPIC

all: $(MOD) install

virtual.so: virtual.o

 $(CROSSLD) -o $@ $(SFLAGS) $<

virtual.o: virtual.c virtual.h

 $(MPICC) -c $(CFLAGS) $<

virtual.h: virtual.w

 $(WR) -p $(PROTOFILE) -f $(FCTFILE) -w $< -o $@

install: $(MOD)

 for mymod in $(MOD); do \

 (../../patch/patch $$mymod $(PNMPI_LIB_PATH)/$$mymod);

 done

clean:

 rm -f $(MOD) *.o virtual.h

clobber: clean

 rm -f *~

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

Building PNMPI Modules with Make vs. CMake

 Equivalent CMake file:
• No environment variables needed
• PNMPI is automatically located by the build

— PNMPI exports build information, build can simply import this
 Build uses variables and functions supplied by PNMPI

• add_pnmpi_module()

• add_wrapped_file()

• ${PNMPI_MODULES_DIR} is the install location

find_package(PnMPI REQUIRED)

Find_package(MPI REQUIRED)

add_pnmpi_module(virtual virtual.c)

add_wrapped_file(virtual.c virtual.w)

install(TARGETS virtual DESTINATION ${PnMPI_MODULES_DIR})

include_directories(

 ${PnMPI_INCLUDE_PATH}

 ${MPI_C_INCLUDE_PATH})

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

Building PNMPI Modules with Make vs. CMake

 Equivalent CMake file:
• No environment variables needed
• PNMPI is automatically located by the build

— PNMPI exports build information, build can simply import this
 Build uses variables and functions supplied by PNMPI

• add_pnmpi_module()

• add_wrapped_file()

• ${PNMPI_MODULES_DIR} is the install location

find_package(PnMPI REQUIRED)

Find_package(MPI REQUIRED)

add_pnmpi_module(virtual virtual.c)

add_wrapped_file(virtual.c virtual.w)

install(TARGETS virtual DESTINATION ${PnMPI_MODULES_DIR})

include_directories(

 ${PnMPI_INCLUDE_PATH}

 ${MPI_C_INCLUDE_PATH})

function(add_pnmpi_module targetname)
 # Add a library for the module

 add_library(${targetname} MODULE ${ARGN})

 # Patch the library in place once it's built
 get_target_property(lib ${targetname} LOCATION)
 get_target_property(patch pnmpi-patch LOCATION)

 set(tmplib ${targetname}-unpatched.so)

 add_custom_command(TARGET ${targetname} POST_BUILD
 COMMAND mv ARGS ${lib} ${tmplib}
 COMMAND ${patch} ARGS ${tmplib} ${lib}

 COMMAND rm ARGS -f ${tmplib}
 WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}

 COMMENT "Patching ${targetname}”
 VERBATIM)

 # Make sure that PnMPI lib and patch tool
 # are built before this module.

 add_dependencies(${targetname} pnmpi-patch pnmpi)
endfunction()

This code is provided by PnMPI

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

Exporting build information in CMake projects
is simple

 Each project exports a file that supplies build information (library, include
locations, etc.)
• Other projects can use MyModule’s libraries easily
• Client projects simply import information from MyProject

— MyProject location is supplied in environment or at build time
— Environment variables are easy to set in dotkits or environment modules

 Makes integration of our own tools simple
• No custom m4 scripts needed for CMake projects

add_library(MyModule module.c wrapper.c)
add_wrapped_file(wrapper.c wrapper.w)

install(TARGETS MyModule EXPORT MyModule-libs DESTINATION lib)
install(EXPORT MyModule-libs DESTINATION share/cmake/MyModule)

install(FILES MyModule-config.cmake DESTINATION share/cmake/MyModule)

find_package(MyModule REQUIRED)
add_executable(myexe myexe.c)

target_link_libraries(myexe MyModule)

Code doing the exporting:

Client project attempting to find above library:

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

Exporting build information in CMake projects
is simple

 Each project exports a file that supplies build information (library, include
locations, etc.)
• Other projects can use MyModule’s libraries easily
• Client projects simply import information from MyProject

— MyProject location is supplied in environment or at build time
— Environment variables are easy to set in dotkits or environment modules

 Makes integration of our own tools simple
• No custom m4 scripts needed for CMake projects

add_library(MyModule module.c wrapper.c)
add_wrapped_file(wrapper.c wrapper.w)

install(TARGETS MyModule EXPORT MyModule-libs DESTINATION lib)
install(EXPORT MyModule-libs DESTINATION share/cmake/MyModule)

install(FILES MyModuleConfig.cmake DESTINATION share/cmake/MyModule)

find_package(MyModule REQUIRED)
add_executable(myexe myexe.c)

target_link_libraries(myexe MyModule)

Code doing the exporting:

Client project attempting to find above library:# Various important directories in the PnMPI installation.

set(MyModule_INSTALL_PREFIX @CMAKE_INSTALL_PREFIX@)

set(MyModule_INCLUDE_DIR @CMAKE_INSTALL_PREFIX@/include)

set(MyModule_LIBRARY_DIR @CMAKE_INSTALL_PREFIX@/lib)

set(MyModule_CMAKE_INCLUDE_DIR @CMAKE_INSTALL_PREFIX@/share/cmake/MyModule)

include(${MyModule_CMAKE_INCLUDE_DIR}/MyModule-libs.cmake)

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

 Knows about GNU, Intel, XL, Pathscale, PGI, Visual Compilers
 Full support for rpath

• Used extensively at LLNL due to number/versions of installed packages
 Platform/compiler/language-specific flags for:

CMAKE_SHARED_LIBRARY_${lang}_FLAGS
CMAKE_SHARED_LIBRARY_CREATE_${lang}_FLAGS
CMAKE_SHARED_LIBRARY_RUNTIME_${lang}_FLAG

 Full control over link line for exe’s and libs via
• CMAKE_${lang}_LINK_EXECUTABLE
• Useful for special XL/GNU flags used for dynamic executables on BG/P

 Platform support files are relatively easy to write
• We did BlueGene/P support for static and dynamic libs

— boost-cmake build for BG/P worked out of the box
• Cross compiling is reasonably well supported

— Still need to do hacky things for hybrid builds
• Compare to libtool!

Cmake has more robust compile/link options

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

We have developed a wrapper generator to
speed generation of boilerplate code in PMPI

 wrap.py: LLNL Wrapper Generator
• Based on wrapper generator in MPE toolkit (came with

MPICH 1)
• Extensible

— written in python; each wrap.py macro is a python
function.

 Used extensively in the PNMPI build
 Adopted by Allinea for use in DDT debugger

#define swap_comm(comm) \
 if (comm == MPI_COMM_WORLD) comm = virtual_comm;

{{fnall fn_name}}
 {{apply_to_type MPI_Comm swap_comm}}
{{endfnall}}

Communicator virtualization in 5 lines with wrap.py

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

Basic wrapper generation

{{fnall foo MPI_Send MPI_Recv}}
 double start_time = get_time_in_nanoseconds();
 {{callfn}}
 double end_time = get_time_in_nanoseconds();
 printf("{{foo}} took %f nanoseconds to run!\n", (end_time - start_time));
{{endfnall}}

Simple code for timing all
functions

{{fn foo MPI_Send MPI_Recv}}
 // 'foo' here evaluates to just the name of the function.
 my_global_function_pointer = {{foo}};
 {{callfn}}
{{endfn}}

Wrap just a couple functions to store their addresses in a
global:

 wrap.py parses mpi.h and extracts info on types, args, of
declarations
• Has some a priori knowledge
• Doesn’t require extra prototype files with descriptions of functions

 Generates both C and Fortran bindings for same functions
• Handles special cases like Fortran mpi_init.

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

Generating non-wrapper code for each MPI
function

typedef enum {
 {{forallfn foo}}
 {{foo}}_id,
 {{endforallfn}}
} mpi_fn_id_t;

Generate enum ids for each MPI function

{{forallfn foo}}
static const char *{{foo}}_name = “{{foo}}”;
{{endforallfn}}

String ids for all functions

 These don’t generate wrappers
• Allow same iteration over prototypes and type/arg information

 Can also use these to generate non-C code
• Used by Allinea to generate XML API description files for DDT

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

Simple syntax for lists and list expressions

 // Formal params:
 {{formals}}
 {{formals 0}}
 {{formals 1}}

Simple list of strings

 // Get a list of only those formal parameters that have MPI handle types:
 {{filter '^MPI_' {{formals}} }}

 // replace void with FOO in the first type in the parameter list
 {{sub {{types 0}} void FOO}}

 // replace any MPI type with MPI_Foo in the parameter list
 {{ret_type}} {{foo}}({{zip {{sub {{types}} 'MPI_.*' MPI_Foo}} {{args}} }});

Some built in lists, and indexing them for particular elements:

{{list foo bar baz}}

 // Types of formals:
 {{types}}
 {{types 0}}
 {{types 1}}

 // Argument names:
 {{args}}
 {{args 0}}
 {{args 1}}

Substitution, and filtering lists with regular expressions:

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

wrap.py is easy to extend
#define swap_comm(comm) \
 if (comm == MPI_COMM_WORLD) comm = virtual_comm;

{{fnall fn_name}}
 {{apply_to_type MPI_Comm swap_comm}}
{{endfnall}}

Communicator virtualization in 5 lines with wrap.py

 Above code swaps out MPI_COMM_WORLD
for another communicator

 Allows applications to run in a subpartitionof
their MPI allocation

 Easy to implement in Python
• Other such functions can be added quickly

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

wrap.py is easy to extend
#define swap_comm(comm) \
 if (comm == MPI_COMM_WORLD) comm = virtual_comm;

{{fnall fn_name}}
 {{apply_to_type MPI_Comm swap_comm}}
{{endfnall}}

Communicator virtualization in 5 lines with wrap.py

class TypeApplier:
 """This class implements a Macro function for applying something
 callable to args in a decl with a particular type.
 """
 def __init__(self, decl):
 self.decl = decl

 def __call__(self, out, scope, args, children):
 len(args) == 2 or syntax_error("Wrong number of args in apply.")
 type, macro_name = args
 for arg in self.decl.args:
 if arg.cType() == type:
 out.write("%s(%s);\n" % (macro_name, arg.name))

Python code that implements above macro

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

 MPIEcho tool was developed in ~2 weeks using wrap.py
• Allows MPI ranks to be cloned so that heavyweight instrumentation can be

spread out
• Implemented with simple PnMPI virtualization modules in tool stack

 Tool needs semantics of MPI operations in addition to wrapper
generation
• Specific information about args (in parameters, out parameters etc).

We are looking into convenient ways to add
more semantics to wrappers

13

MPI_COMM_WORLD 0 1 2 3 4 5 6 7

app_world 0 1 2 3 4 5 6 7

0

1

2

3

4

0

1

2

3

4

0

1

2

8

9

10

11

12

14

15

16

17

Application

Clone

comm_app
MPI_COMM_WORLD
comm_family

Processes Communicators
5

1
2

MPI ranks

Lawrence Livermore National Laboratory CScADS Workshop on Tools 2011

 Preparing releases of a number of tool frameworks components using
build system described here

 We are extending wrap.py for:
• Richer semantic information about specific APIs available in the wrapper

generator
• Generic interception of other language runtimes

— e.g. given a header, wrap every function in it

Current and Future Projects

• PNMPI
• Muster scalable clustering library
• Nami Wavelet compression library
• Generic, annotatable Call Tree library
• Effort library for modeling source code

phases/regions
• Others

• Libraries used by PAVE project
— BG/P counters
— Communication measurement and

collective modeling
• Libraries used by debugging tools

— Online control flow modeling

