
M
it
g

li
e

d
 d

e
r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h
a

ft

[Scalasca] Tool Integrations

Aug 2011 | Bernd Mohr CScADS Performance Tools Workshop

Lake Tahoe

Aug 2011 JSC 2

Contents

• Current integration of various direct measurement tools

 Paraver

 Scalasca

 TAU

 Vampir

• CUBE tool integration API

 Cube Paraver / Vampir

 Cube generic tool

• UNITE

• EU funded integration projects

 Score-P

Aug 2011 JSC 3

Direct measurement tools

• Extrae / Paraver

 Very flexible (as programmable) trace visualizer

 Barcelona Supercomputing Center

 http://www.bsc.es/paraver

• Scalasca

 Scalable callpath profiler and trace analyzer

 Jülich Supercomputing Centre and GRS Aachen

 http://www.scalasca.org

• TAU Performance System ®

 Very portable and versatile profile and tracing toolset

 University of Oregon

 http://tau.uoregon.edu

• VampirTrace / Vampir

 Trace measurement and visualization

 Technical University of Dresden

 http://www.tu-dresden.de/zih/vampirtrace and http://www.vampir.eu

Aug 2011 JSC 4

Scalasca TAU VAMPIR Paraver

X
X

Scalasca
Trace

Analyzer

CUBE

profile

CUBE

Presenter

EPILOG

trace

TAU

−EPILOG

TAU

−PROFILE

TAU

profile
PARAPROF

PerfDMF

TAU

−TRACE

TAU

trace

gprof / mpiP

profile

X

X

X

VAMPIR
Vampir

Trace

OTF / VTF3

trace

TAU

−VT

pattern

trace

X XX

X

X

X

RR

Paraver
PRV

trace

Aug 2011 JSC 5

Integration Paths

• based on component usage

 all tools use PAPI for portable HW counter measurement

 Scalasca, TAU, VampirTrace

 Use OPARI for portable OpenMP instrumentation

 Use PDT/tauinst for source code instrumentation

 Use DynInst for binary instrumentation

 TAU can be configured to use measurement system of

Scalasca or Vampir as backend

• based on data exchange

 Vampir (7.2+) / VampirServer (2.3+) can read Scalasca's

EPILOG traces

 TAU paraprof can read Scalasca's CUBE profiles

 Large variety of profile and trace format converters

Aug 2011 JSC 6

VAMPIR KOJAK via Pattern Traces

Original

Vampir

event trace

Pattern

trace

generated

by KOJAK

analysis

highlighting

problematic

areas

Aug 2011 JSC 7

Scalasca Vampir Integration

Connect to trace browser

Max severity in trace browser

Aug 2011 JSC 8

CUBE Tool Integration API

• Current hard-coded interactions with trace browsers

 Vampir via D-BUS interface

 2-way communication (+), complex implementation (-)

 Paraver via configuration file loaded via USR1 signal

 1-way communication (-), simple implementation (+)

• Current work

 Design (and implementation) of a CUBE generic tool

integration API

 Small but well-defined set of interaction points (callbacks)

and context information (parameters)

 Tool-specific implementation of interface as shared library

 Better ideas? Comments? Experiences?

Aug 2011 JSC 9

UNITE

• UNiform Integrated Tool Environment

• Goal:

 Provide portable common access

to parallel performance tools

 Lower bar for inexperienced users and admins

• Basic idea:

 Based on “module” command (www.modules.org)

 Standardize module names and structure (e.g. help)

 Activate by “module load UNITE”

Aug 2011 JSC 10

Definitions and Standard Names

• Package ::= product, tool, or component which

 Is available / can be used / can be installed as separate entity

 Two basic sorts of packages: Tools, Utils

 Typically comes in multiple versions

 Example: vampir, scalasca, marmot, ...

• Version

 <MajorVersion> . <MinorVersion> [.<Plevel>] [(rc|b)<Number>]

 Example: 2.1b2

• Specialization ::= Optional constraints

 Which limit the applicability of a package and/or version

 Currently mainly needed on Linux installations

 Specified as: –<MpiLibrary>–<Compiler>–<Precision>

 Unnecessary constraints are left out

 Example: –openmpi–32bit

Aug 2011 JSC 11

Installation Space Layout: Module Files

• Install required UNITE components together

at system-specific installation path UNITE_ROOT

${UNITE_ROOT}/

modulefiles/ # UNITE module files

tools/

<package>/

<version>–<spezialization>

utils/

<package>/

<version>–<spezialization>

scripts/ # for basic scripts

templates/ # for “generic” module files

doc/ # for overall UNITE docu

Aug 2011 JSC 12

Installation Space Layout: Package Files

• Actual package are installed also under

${UNITE_ROOT}/packages

[Note: if not feasable or to include historic installations, create

symbolic-link trees to real installation directories]

${UNITE_ROOT}/

packages/

<package>/

<version>–<spezialization>/

<package-specific-sublayout>

Aug 2011 JSC 13

Example: "module help scalasca" Output

% module help scalasca

-- Module Specific Help for 'scalasca/1.0-mpibull2-intel-64bit‘ --

Scalasca:
Scalable Performance Analysis of Large-Scale Parallel Applications

Version 1.0 (for BullMPI 2, Intel Compiler, 64bit)

Basic usage:

1. Instrument application with skin = "scalasca -instrument"
2. Collect & analyze execution measurement with scan = "scalasca –

analyze"
3. Examine analysis results with square = "scalasca -examine"

For more information:
- See ${SCALASCA_ROOT}/doc/manuals/quickref.pdf

or type "scalasca -h"
- http://www.scalasca.org

- mailto:scalasca@fz-juelich.de

Aug 2011 JSC 14

UNITE Tools Package

• UNITE website: http://apps.fz-juelich.de/unite/

• Common usage and installation documentation

• Download, build and install

a set of performance and validation tools in one package:

• Updated version with latest tool versions

available real soon now!

 UNITE

package installer and

module package

 OTF-1.6.5 (1.9)

 pdtoolkit-3.15 (3.16)

 cube-3.3 (3.3.2)

 Scalasca-1.3.1 (1.3.3)

 Vampirtrace-5.8.2 (5.11)

 UniMCI-1.0.1

 Marmot-2.4

 Vampir-5.x or 7.x

 VampirServer-1.x, 2.x

Aug 2011 JSC 15

UNITE Tools Package II

• Extensively tested on

 Itanium/IA32/x86_64 platforms with various MPI libraries

(MPICH1, MPICH2, OpenMPI, Intel MPI, LAM, BullMPI,

Parastation MPI, SGI MPT, ...)

 AIX and Solaris clusters

• Already in use on Bull Nova and production machines of JSC,

ZIH, RWTH, HLRN, …

• Future work:

 Integration of other tools (Paraver, TAU, …)

 More platforms (Cray XT, IBM BlueGene, NEC)

Aug 2011 JSC 16

Funded Integration Projects

• SILC (01/2009 to 12/2011)

 Unified measurement system (Score-P)

for Vampir, Scalasca, Periscope

• PRIMA (08/2009 to 08/2012)

 Integration of TAU and Scalasca

• LMAC (08/2011 to 07/2013)

 Evolution of Score-P

 Analysis of performance dynamics

• H4H (10/2010 to 09/2013)

 Hybrid programming for

heterogeneous platforms

• HOPSA (02/2011 to 01/2013)

 Integration of system and application

monitoring

Aug 2011 JSC 17

Score-P Objectives

• Mainly funded by SILC, PRIMA, LMAC projects

• Make common part of Periscope, Scalasca, TAU, and Vampir

a community effort

 Score-P measurement system

• Save manpower by sharing resources

• Invest this manpower in analysis functionality

 Allow tools to differentiate faster

according to their specific strengths

 Increased benefit for users

• Avoid the pitfalls of earlier community efforts

 Start with small group of partners

 Build on extensive history of collaboration

Aug 2011 JSC 18

Score-P Design Goals

• Functional requirements

 Performance data: profiles, traces

 Initially direct instrumentation, later also sampling

 Offline and online access

 Metrics: time, communication metrics and hardware counters

 Initially MPI 2 and OpenMP 3, later also CUDA and OpenCL

• Non-functional requirements

 Portability: all major HPC platforms

 Scalability: petascale

 Low measurement overhead

 Easy installation through UNITE framework

 Robustness

 Open source: New BSD license

Aug 2011 JSC 19

Score-P Architecture

Application (MPI, OpenMP, hybrid)

Score-P measurement infrastructure

Online
interface

Event traces (OTF2)

Vampir Scalasca PeriscopeTAU

Hardware counter (PAPI)

Instrumentation

Call-path profiles (CUBE4)

MPI wrapper

Compiler
TAU

instrumentor
OPARI 2 COBI

TAU
adaptor

s
u

p
p

le
m

e
n

ta
l

in
s
tr

u
m

e
n

ta
ti
o

n

+
 m

e
a

s
u

re
m

e
n

t

s
u

p
p

o
rt

TAU

Aug 2011 JSC 20

Score-P Partners

• Forschungszentrum Jülich, Germany

• German Research School for Simulation Sciences,

Aachen, Germany

• Gesellschaft für numerische Simulation mbH

Braunschweig, Germany

• RWTH Aachen, Germany

• Technische Universität Dresden, Germany

• Technische Universität München, Germany

• University of Oregon, Eugene, USA

Aug 2011 JSC 21

OTF-2 Tracing Format

• Successor to OTF and EPILOG

• Same basic structure as OTF, EPILOG, or other formats

• Design goals

 High scalability

 Low overhead (storage space and processing time)

 Good read/write performance

 Reduced number of files

during initial writing via SIONlib

 Compatibility reader for OTF

and Epilog formats

 Extensibility

Aug 2011 JSC 22

CUBE-4 Profiling Format

• Latest version of a family of profiling formats

 Still under development, to be released soon

• Representation of three-dimensional performance space

 Metric, call path, process or thread

• File organization

 Metadata stored as XML file

 Metric values stored in binary format

 Two files per metric:

data + index for storage-efficient

sparse representation

• Optimized for

 High write bandwidth

 Fast interactive analysis through incremental loading

Aug 2011 JSC 23

Score-P Status and Future Plans

• Currently being extensively tested

• Release of beta version at SC11

• Extensions

 Heterogeneous computing (H4H project)

 Time-series profiling (HOPSA & LMAC projects)

 Sampling (LMAC project)

