Topology is and Effective Language to Describe Abstractions of Features from Raw Data

Hierarchical topology of a 2D Miranda vorticity field

Our Framework is Based on Robust Topological Computations for Quantitative Data Analysis

- Provably robust computation
- Provably complete feature extraction and quantification
- Hierarchical topological structures used to capture multiple scales
- Error-bounded approximations associated with each scale
- Formal mathematical definition associated with each analysis
- Scalable performance in association with streaming techniques

Hierarchical topology of a 2D Miranda vorticity field

Molecular dynamics simulation (left) with abstract graph representation of its features at two scales (right)

We Introduced the Morse–Smale Complex for Complete Data Analysis

- The Morse–Smale complex partitions the domain of *f* in regions of uniform gradient
- Generalizes the notion of monotonic interval
- Dimension of a region equal index difference of source and destination
- Remove inconsistency of local gradient evaluations

3D

2D

1D '

Topology Provides a Well Defined Formalism for Communicating Shape

Topology Provides a Well Defined Formalism for Communicating Shape

Basins

Mountains

Topology Provides a Well Defined Formalism for Communicating Shape

Ridge/Valley lines

Saddle Connectors

Demo C_4H_4

We Use Cancellations to Create a Multi-scale Representation of the Trends in the Data

Cancellations:

Approximation: Multi-scale: critical points can be created or destroyed in pairs that are connected 1-manifolds error = persistence/2 (proven lower bound) consistent gradient segmentation at all scales

persistence p \downarrow \leftrightarrow 1D: cancellation=contraction

2D: cancellation=contraction + edge removal

3D

Demo S3D Combustion Simulation

Big Data Analytics Success Stories

Quantitative Analysis of the Impact of a Micrometeoroid in a Porous Medium

- Many possible applications:
 - NASA's Stardust Spacecraft
 - National Ignition Facility Targets
 - Light and Robust Materials
 - many more...

PUTAH NATIONAL LABORAT

The Topological Reconstruction Method is Validated with a Controlled Test Shape

Challenge: robust reconstruction of the structure of a porous medium

Preparation: we develop control test data to validate the approach

We Report the Distribution of Topological Features in the Full Resolution Data

The Hierarchical Morse-Smale Complex Has Very Good Reconstruction Properties

We Compute the Complete Morse-Smale Complex for the Porous Medium

Need to Find Proper Threshold Values and Characterize the Stability of the Solution

Pascucci-17

Need to Find Proper Threshold Values and Characterize the Stability of the Solution

Pascucci-18

We Obtain a Robust Reconstruction of the Filament Structures in the Material

Pascucci-19

Demo Porous Medium

CEDMAV

We Track the Evolution of the Filament Structure of the Material Under Impact

Time comparison of the reconstructions

The Extracted Structures Allow to Quantify the Change in Porosity of the Material

Density profiles

Decay in porosity of the material

Metric	t=500	t=12750	t=25500	t=51000
# Cycles	762	340	372	256
Total Length	34756	24316	23798	18912

Data Analysis and Visualization Center is a Catalyst for a Virtuous Cycle of Collaborative Activities

- Tight cycle of :
 - basic research,
 - software deployment
 - user support
- Coordination among many projects:
 - unified techniques for several applications
- Strong University-Lab-Industry collaboration
- Focused technical approach:
 - performance tools for fast data access
 - general purpose data exploration
 - error bounded quantitative analysis
 - feature extraction and tracking
- Interdisciplinary collaboration with domain scientists (from math to physics):
 - motivating the work
 - formal theoretical approaches
 - feedback to specific disciplines

