“I have had my results for a long time, but I do not yet know how I am to arrive at them.”

–Carl Friedrich Gauss, 1777-1855

In Situ Data Analysis

Morse-Smale Complex of combustion in the presence of a cross flow (image courtesy Attila Gyulassy)

Tom Peterka
tpeterka@mcs.anl.gov
Mathematics and Computer Science Division
Scalable Analysis & Visualization: The Data Parallel Approach

Treat analysis as any other parallel computation
- Decompose the domain
- Assign to processors
- Combine local and global operations
- Use parallel I/O, MPI, other programming models
- Balance load, minimize communication
- Measure strong, weak scaling, efficiency

Integrate with simulation

“The combination of massive scale and complexity is such that high performance computers will be needed to analyze data, as well as to generate it through modeling and simulation.”
Particle tracing of thermal hydraulics flow

Information entropy analysis of astrophysics

Morse-Smale complex of combustion

Voronoi tessellation of cosmology
Separate Analysis Ops from Data Ops

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Application</th>
<th>Application Data Model</th>
<th>Analysis Data Model</th>
<th>Analysis Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Tracing</td>
<td>CFD</td>
<td>Unstructured Mesh</td>
<td>Particles</td>
<td>Numerical Integration</td>
</tr>
<tr>
<td>Information Entropy</td>
<td>Astrophysics</td>
<td>AMR</td>
<td>Histograms</td>
<td>Convolution</td>
</tr>
<tr>
<td>Morse-Smale Complex</td>
<td>Combustion</td>
<td>Structured Grid</td>
<td>Complexes</td>
<td>Graph Simplification</td>
</tr>
<tr>
<td>Computational Geometry</td>
<td>Cosmology</td>
<td>Particles</td>
<td>Tessellations</td>
<td>Voronoi</td>
</tr>
</tbody>
</table>

Communication
- Nearest neighbor
- Global reduction, nearest neighbor
- Global reduction
- Nearest neighbor

Additional
- File I/O, Domain decomposition, process assignment, utilities

You do this yourself
- Can use serial libraries such as OSUFlow, Qhull, VTK
 (don’t have to start from scratch)

DIY handles this
Tackling the Data-Intensive Part of Data Analysis

DIY: help the user write own data-parallel analysis algorithms.

Main ideas and Objectives

- Large-scale parallel analysis (visual and numerical) on HPC machines
- Scientists, visualization researchers, tool builders
- In situ, coprocessing, postprocessing
- Data-parallel problem decomposition
- Scalable data movement algorithms

Benefits

- Researchers can focus on their own work, not on parallel infrastructure
- Analysis applications can be custom
- Reuse core components and algorithms for performance and productivity
Implement Data Operations in a Library with a small \ell

Features
- Parallel I/O to/from storage
 - MPI-IO, BIL
- Domain decomposition
 - Decompose domain
 - Describe existing decomposition
- Network communication
 - Global reduction (2 flavors)
 - Local nearest neighbor

Library
- Written in C++
- C bindings, future Fortran bindings
- Autoconf build system (configure, make, make install)
- Lightweight: libdiy.a 800KB
- Maintainable: \(\sim 15K \) lines of code, including examples

Diagram
- DIY usage and library organization
 - Simulation (Flash, Nek5000, HACC)
 - Analysis Library (ITL, Osuflow, Qhull, VTK)
 - Visualization Tool (ParaView, VisIt)
 - I/O (Read Data)
 - Decomposition
 - Communication (Neighbor, Global)
 - Utility (Parallel Compression)
 - Datatype Creation
 - Parallel Sort

DIY
- MPI
- DIY usage and library organization
Group Data Items Into Blocks

The block is DIY’s basic unit of data. Original dataset is decomposed into generic subsets called blocks, and associated analysis items live in the same blocks. Blocks contain one or more instances of the data type described earlier.
All data movement operations are per block; blocks exchange information with each other using DIY's communication algorithms. DIY manages and optimizes exchange between processes based on the process assignment. This allows for flexible process assignment as well as easy debugging.
Group Blocks into Neighborhoods

- Limited-range communication
- Allow arbitrary groupings
- Distributed, local data structure and knowledge of other blocks (not master-slave global knowledge)

Two examples of 3 out of a total of 25 neighborhoods
DIY provides point to point and different varieties of collectives within a neighborhood via its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).
Make Global and Neighborhood Communication Fast and Easy

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Tracing</td>
<td>Nearest neighbor</td>
</tr>
<tr>
<td>Global Information Entropy</td>
<td>Merge-based reduction</td>
</tr>
<tr>
<td>Point-wise Information Entropy</td>
<td>Nearest neighbor</td>
</tr>
<tr>
<td>Morse-Smale Complex</td>
<td>Merge-based reduction</td>
</tr>
<tr>
<td>Computational Geometry</td>
<td>Nearest neighbor</td>
</tr>
<tr>
<td>Region growing</td>
<td>Nearest neighbor</td>
</tr>
<tr>
<td>Sort-last rendering</td>
<td>Swap-based reduction</td>
</tr>
</tbody>
</table>

Factors to consider when selecting communication algorithm:
- associativity
- number of iterations
- data size vs. memory size
- homogeneity of data

DIY provides 3 efficient scalable communication algorithms on top of MPI. May be used in any combination.
3 Communication Patterns

Nearest neighbor

Swap-based reduction

Merge-based reduction
Data Input

Multiblock and Multifile I/O

- Application-level two-phase I/O
- Reads raw, netCDF, HDF5 (future)
- Read requests sorted and aggregated into large contiguous accesses
- Data redistributed to processes after reading
- Single and multi block/file domains
- 75% of IOR benchmark on actual scientific data

Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11
Analysis Output

Output file format

Features

Binary
General header/data blocks
Footer with indices
Application assigns semantic value to DIY blocks
Written efficiently in parallel
Parallel block-wise compression
// initialize
int dim = 3; // number of dimensions in the problem
int tot_blocks = 8; // total number of blocks
int data_size[3] = {10, 10, 10}; // data size
MPI_Init(&argc, &argv); // init MPI before DIY
DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nb, data_size, MPI_COMM_WORLD);

// decompose domain
int share_face = 0; // whether adjoining blocks share the same face
int ghost = 0; // additional layers of ghost cells
int ghost_dir = 0; // ghost cells apply to all or some sides of a block
int given[3] = {0, 0, 0}; // constraints on blocking (none)
DIY_Decompose(share_face, ghost, ghost_dir, given);

// read data
for (int i = 0; i < nb; i++) {
 DIY_Block_starts_sizes(i, min, size);
 DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));
}
DIY_Read_blocks_all();
// your own local analysis

// merge results, in this example
// could be any combination / repetition of the three communication patterns
int rounds = 2; // two rounds of merging
int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge
int nb_merged; // number of output merged blocks
DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values, &MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);

// write results
DIY_Write_open_all(outfile);
DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);
DIY_Write_close_all();

// terminate
DIY_Finalize(); // finalize DIY before MPI
MPI_Finalize();
Applications
Parallel Voronoi Tessellation

Thresholding cell volume to reveal cosmological voids

<table>
<thead>
<tr>
<th>Particles</th>
<th>Processes</th>
<th>Total Time (s)</th>
<th>Simulation Time (s)</th>
<th>Tessellation Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>512^3</td>
<td>2048</td>
<td>3852</td>
<td>3684</td>
<td>167</td>
</tr>
<tr>
<td>4192</td>
<td>2008</td>
<td>1918</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>8096</td>
<td>1784</td>
<td>1722</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>16384</td>
<td>1406</td>
<td>1344</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

Subset of strong and weak scaling test results shows good scalability and relatively small fraction of total run time for in situ analysis.
Particle tracing of \(\frac{1}{4} \) million particles in a \(2048^3 \) thermal hydraulics dataset results in strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms.
Information Entropy Performance and Scalability

Strong Scaling

Computation of information entropy in 126x126x512 solar plume dataset shows 59% strong scaling efficiency.
Computation of Morse-Smale complex in 1152^3 Rayleigh-Taylor instability data set results in 35% end-to-end strong scaling efficiency, including I/O.
Summary

- Consider data and data movement as first-class citizens
- Tools needed both for run-time as well as postprocessing analysis
- Analysis is any sequence of operations on data that hopefully reduces its size and/or improves its understandability
- Much more work to be done!
“The purpose of computing is insight, not numbers.”
–Richard Hamming, 1962

Acknowledgments:

Facilities
Argonne Leadership Computing Facility (ALCF)
Oak Ridge National Center for Computational Sciences (NCCS)

Funding
DOE SDMAV Exascale Initiative
DOE Exascale Codesign Center

http://www.mcs.anl.gov/~tpeterka/software.html
https://svn.mcs.anl.gov/repos/diy/trunk

Tom Peterka
CScADS Summer Workshop 7/26/12
Mathematics and Computer Science Division