Data Models & their Influence On...

Tim Tautges
Argonne National Lab

CSCADS Workshop
July 31, 2012
What is a Data Model?

- What is a data model?
 - In language, a data model is analogous to the words used to tell your story
 - In code, the data structures used in composing algorithms
 - In a library, the data types used to communicate with the library
- Here, I’m concerned with libraries
- Why is a library’s data model important?
 - Strongly affects usability of the library
 - Determines what can be expressed through the library’s API
- Characteristics of a good data model
 - Balanced between concreteness and abstractness
 - Too concrete: code gets too verbose
 - Too abstract: code difficult to understand
 - Abstractions cover current & future needs
- In library design, once you’ve determined scope and data model, API should fall out naturally
Examples of Data Models (& their problems)

- **ExodusII**
 - Format for storing FEA mesh, analysis results
 - Node, Element, Element Block, Sideset, Nodeset, variable, timestep
 - *Element block represents both material and fundamental element*
 - *No mechanism for defining other groupings of elements, e.g. proc decomposition, AMR tree, etc.*

- **CGNS**
 - Fundamental element types TRI3, TRI6, HEX8, HEX20, etc.
 - Basic operation: get all hex elements
 - Get hex8, get hex20, get hex27
ITAPS Data Model

- **Entities**
 - Vertex, Edge, Tri, Quad, (Pentagon?), (Hexagon?), Polygon, Tet, Pyramid, Prism, Knife, Hex, Polyhedron

- **Sets** (collections of entities & sets, parent/child links)
 - BC groups, materials, proc partitions, kdtree nodes, ...

- **Interface** (OOP, owns data)

- **Tags** (annotation of data on other 3)
 - Fine-grained (entities): vertex-based temperature, element-based heat generation rate
 - Coarse-grained (sets, interface): BC type, proc rank, provenance

Parallel Partition

Geometric model topology

Vertex-based displacements
Mesh-Oriented datABase (MOAB)

- Library for representing, manipulating structured, unstructured mesh models
- Supported mesh types:
 - FE zoo (vertices, edges, tri, quad, tet, pyramid, wedge, knife, hex)
 - Polygons/polyhedra
 - Structured mesh
- Optimized for memory usage first, speed second
- Implemented in C++, but uses array-based storage model
 - Avoids C++ object-based allocation/deallocation
 - Allows access in contiguous arrays of data
- Mostly an ITAPS-like data model
 - Entity, set, tag, interface
- Mesh I/O from/to various formats
 - HDF5 (custom), vtk, CCMIO (Star CD/CCM+), Abaqus, CGM, Exodus
- Main parts:
 - Core representation
 - Tool classes (skinner, kdtree, OBBtree, ParallelComm, ...)
 - Tools (mbsize, mbconvert, mbzoltan, mbcoupler, ...)
MOAB Entity Storage

Entity Handle:
- Unsigned long type
- Bitmask
- Sorts by dimension, type

Range:
- Container of handles
- Constant-size if contiguous handles

EntitySequences:
- Represent used portions of handle space
- Have pointer to SequenceData
- Have start and end handle values
- Arranged in binary tree by start handle

Cache most recently accessed EntitySequence

Typically one EntitySequence for an entire SequenceData

SequenceData:
- Represent allocated portions of handle space
- Have start and end handle
- Coordinates or Connectivity
- Dense Tag Data

Connectivity array
Dense tag #1
Dense tag #2
…
Influence on Computation...

- Mesh acts as a vehicle for much other simulation data
- Pursuing various efforts to use MOAB as a simulation data backplane, e.g.
 - NEAMS/CESAR

- Requires:
 - Reading/initializing mesh from MOAB
 - Pushing simulation results down into MOAB
- Under certain conditions, MOAB can share field data directly with application, as contiguous-memory arrays
 - *But*, requires app and MOAB to use the same local ordering
 - In practice, apps come with their own expectations about ordering
 - Will require local reordering in MOAB (will also be useful for on-node shared memory)
Influence on I/O...

- Current HLL for I/O interact in terms of 1D or multi-D arrays
 - Translation from various grid-based data structures can be non-trivial amount of code, even for common ones (“7 dwarves”), e.g. unstructured, structured AMR, particle, etc.
- Need HLL’s that communicate at a higher level of abstraction
- Damsel project: present a HLL for I/O in terms of grid and grid-based data
 - Reduce the “impedance mismatch” between apps and I/O library
 - Minimize data copies between app & storage
 - Enable other operations on data in-flight, e.g. compression, query
Influence on Data Analysis...

- Assertion: many important pieces of an integrated data analysis capability are either available as components of original simulation codes, or are being made available as components; i.e. analysis and simulation are converging in the tools they use
 - Data I/O, representation, access
 - Numerical operators (max/min, gradient)
 - Others (MS complex, streamlines, etc.)

- This is a Good Thing in terms of both code reuse and accuracy
- Using well-thought-out data model makes that easier, since components are more flexible & have more headroom
Influence on Visualization...

- If I can viz the data model, I can viz the data
- For example:

Currently:

- *Special readers/datastructures for:*
 - Geometric model, Boundary conditions,
 - Processor partitions, ...

+ *Special handling for:*
 - Picking, drawing, filtering,
 - GUI form interactions, ...

Moving toward:

- *Common set/tag conventions for:*
 - Geometric model, Boundary conditions,
 - Processor partitions, ...

+ *Common handling for:*
 - Picking, drawing, filtering,
 - GUI form interactions, ...

- Moving towards that as part of mesh generation SBIR with Kitware; should have VTK-based entity sets by end of Aug
- Then it becomes a question of how best to abstract any given data
 - E.g. spectral element mesh/data
Going Forward…

- Even if we accomplish this component-based vision, some difficult questions remain
 - What to do about overlaps between existing components/libraries
 - E.g. in CESAR, between MOAB, DIY, GLEAN
 - Are there any critical component prototypes missing, such that everyone will have to wait for that before they have a good integrated solution?
 - Materials? Discretization? Fields?
 - Can we develop benchmarks for pieces that can be composed into a full benchmark too?