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Challenges for Computational Scientists
• Execution environments and applications are rapidly evolving 

— architecture
– rapidly changing multicore microprocessor designs
– increasing scale of parallel systems
– growing use of accelerators

— applications
– MPI everywhere to threaded implementations
– adding additional scientific capabilities to existing applications 
– maintaining multiple variants or configurations for particular problems

• Steep increase in application development effort to attain 
performance, evolvability, and portability

• Application developers need to 
— assess weaknesses in algorithms and their implementations
— improve scalability of executions within and across nodes
— adapt to changes in emerging architectures
— overhaul algorithms & data structures to add new capabilities

3
Performance tools can play an important role as a guide
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Performance Analysis Challenges
• Complex architectures are hard to use efficiently

— multi-level parallelism: multi-core, ILP, SIMD instructions
— multi-level memory hierarchy
— result: gap between typical and peak performance is huge

• Complex applications present challenges 
— for measurement and analysis 
— for understanding and tuning

• Supercomputer platforms compound the complexity
— unique hardware
— unique microkernel-based operating systems 
— multifaceted performance concerns

– computation
– communication
– I/O 
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Performance Analysis Principles
• Without accurate measurement, analysis is irrelevant

— avoid systematic measurement error
— measure actual executions of interest, not an approximation

– fully optimized production code on the target platform

• Without effective analysis, measurement is irrelevant
— quantify and attribute problems to source code
— compute insightful metrics

– e.g., “scalability loss” or “waste” rather than just “cycles” 

• Without scalability, a tool is irrelevant for supercomputing
— large codes
— large-scale threaded parallelism within and across nodes
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Performance Analysis Goals
• Programming model independent tools

• Accurate measurement of complex parallel codes
— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments 

– dynamic loading (Linux clusters) vs. static linking (Cray, Blue Gene)
– SPMD parallel codes with threaded node programs
– batch jobs

• Insightful analysis that pinpoints and explains problems
— correlate measurements with code for actionable results
— support analysis at the desired level

– intuitive enough for application scientists and engineers
– detailed enough for library developers and compiler writers

• Scalable to petascale and beyond
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HPCToolkit Design Principles
• Employ binary-level measurement and analysis

— observe fully optimized, dynamically linked executions 
— support multi-lingual codes with external binary-only libraries

• Use sampling-based measurement (avoid instrumentation)
— controllable overhead
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collect and correlate multiple derived performance metrics
— diagnosis typically requires more than one species of metric

• Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Support top-down performance analysis
— natural approach that minimizes burden on developers
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit

• Ongoing R&D
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• For dynamically-linked executables on stock Linux
— compile and link as you usually do: nothing special needed

• For statically-linked executables (e.g. for BG/P, Cray XT)
— add monitoring by using hpclink as prefix to your link line

– uses “linker wrapping” to catch “control” operations
 process and thread creation, finalization, signals, ...
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• Measure execution unobtrusively
— launch optimized application binaries

– dynamically-linked applications: launch with hpcrun to measure
– statically-linked applications: measurement library added at link time

 control with environment variable settings
— collect statistical call path profiles of events of interest
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• Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source
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• Combine multiple profiles
— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure

13



source 
code

optimized
binary

compile & link call path 
profile

profile 
execution
[hpcrun]

binary 
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program 
structure

HPCToolkit Workflow

• Presentation
— explore performance data from multiple perspectives

– rank order by metrics to focus on what’s important
– compute derived metrics to help gain insight

 e.g. scalability losses, waste, CPI, bandwidth
— graph thread-level metrics for contexts
— explore evolution of behavior over time
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit

• Ongoing R&D
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Measure and attribute costs in context
    sample timer or hardware counter overflows
    gather calling context using stack unwinding

Call Path Profiling
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Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency... 
...not call frequency

Calling context tree
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Novel Aspects of Our Approach
• Unwind fully-optimized and even stripped code

—use on-the-fly binary analysis to support unwinding

• Cope with dynamically-loaded shared libraries on Linux
— note as new code becomes available in address space

• Integrate static & dynamic context information in presentation
— dynamic call chains including procedures, inlined functions, 

loops, and statements



Measurement Effectiveness
• Accurate

— PFLOTRAN on Cray XT @ 8192 cores
– 148 unwind failures out of 289M unwinds
– 5e-5% errors

— Flash on Blue Gene/P @ 8192 cores
– 212K unwind failures out of 1.1B unwinds 
– 2e-2% errors

— SPEC2006 benchmark test suite (sequential codes)
– fully-optimized executables: Intel, PGI, and Pathscale compilers
– 292 unwind failures out of 18M unwinds (Intel Harpertown)
– 1e-3% error

• Low overhead
— e.g. PFLOTRAN scaling study on Cray XT @ 512 cores

– measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead
— suitable for use on production runs
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Outline
• Overview of Rice’s HPCToolkit
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Recovering Program Structure
• Analyze an application binary

— identify object code procedures and loops
– decode machine instructions
– construct control flow graph from branches
– identify natural loop nests using interval analysis

— map object code procedures/loops to source code
– leverage line map + debugging information
– discover inlined code
– account for many loop and procedure transformations

• Bridges the gap between
— lightweight measurement of fully optimized binaries
— desire to correlate low-level metrics to source level abstractions

Unique benefit of our binary analysis



Analyzing Results with hpcviewer
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costs for
• inlined procedures
• loops
• function calls in full context

source pane

navigation pane metric pane

view control
metric display
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Principal Views
• Calling context tree view - “top-down” (down the call chain)

— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs

• Caller’s view - “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places

• Flat view - ignores the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure
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• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior 

• Using HPCToolkit

• Ongoing R&D

Outline
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The Problem of Scaling

0.500

0.625

0.750

0.875

1.000

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ef
fic

ie
nc

y

CPUs

Ideal efficiency
Actual efficiency

?

Note: higher is better



27

Goal: Automatic Scaling Analysis

• Pinpoint scalability bottlenecks

• Guide user to problems

• Quantify the magnitude of each problem

• Diagnose the nature of the problem
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Challenges for Pinpointing Scalability Bottlenecks
• Parallel applications

— modern software uses layers of libraries
— performance is often context dependent

• Monitoring
— bottleneck nature: computation, data movement, synchronization?
— 2 pragmatic constraints

– acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait



29

Performance Analysis with Expectations
• You have performance expectations for your parallel code

— strong scaling: linear speedup
— weak scaling: constant execution time

• Putting your expectations to work
— measure performance under different conditions

– e.g. different levels of parallelism or different inputs
— express your expectations as an equation
— compute the deviation from expectations for each calling context

– for both inclusive and exclusive costs
— correlate the metrics with the source code 
— explore the annotated call tree interactively
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Pinpointing and Quantifying Scalability Bottlenecks

=−   

PQ

Q × 

coefficients for analysis of 
strong scaling

    P ×



• Parallel, adaptive-mesh refinement (AMR) code
• Block structured AMR; a block is the unit of computation
• Designed for compressible reactive flows
• Can solve a broad range of (astro)physical problems
• Portable: runs on many massively-parallel systems
• Scales and performs well
• Fully modular and extensible: components can be 

combined to create many different applications
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Scalability Analysis Demo

Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago

Code:   University of Chicago FLASH
Simulation:  white dwarf detonation
Platform:  Blue Gene/P 
Experiment:  8192 vs. 256 processors
Scaling type:  weak



Scaling on Multicore Processors
• Compare performance 

— single vs. multiple processes on a multicore system

• Strategy
— differential performance analysis

– subtract the calling context trees as before, unit coefficient for each

32



       S3D: Multicore Losses at the Loop Level

33

Execution time 
increases 2.8x in the 
loop that scales worst 

loop contributes a 
6.9% scaling loss to 
whole execution
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior 

• Using HPCToolkit

• Ongoing R&D



Parallel Radix Sort on 960 Cores
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“Right click” on a 
node in the CCT view 
to graph values 
across all threads

Values for all threads 
graphed for the 
selected context

NOTE: Must analyze 
measurement data with 
hpcprof-mpi to include 
thread-centric metrics in 
the performance database



Radix Sort on 960 Cores: Barrier Time
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sorted by rank

sorted by value

value histogram
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior 

• Using HPCToolkit

• Ongoing R&D



• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch: 

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

3817

Understanding Temporal Behavior

Time

Processes

Call 
stack
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Process-Time Views of PFLOTRAN 

8184-core execution on Cray XT5. Trace view rendered using hpctraceviewer on a Mac Book Pro Laptop.
Insets show zoomed view of marked region at different call stack depths.



Presenting Large Traces on Small Displays
• How to render an arbitrary portion of an arbitrarily large trace? 

— we have a display window of dimensions h × w 
— typically many more processes (or threads) than h 
— typically many more samples (trace records) than w 

• Solution: sample the samples!

40

Trace with n processes
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior 

• Using HPCToolkit

• Ongoing R&D



Where to Find HPCToolkit
• ALCF Systems

— intrepid: /home/projects/hpctoolkit/ppc64/pkgs/hpctoolkit
— vesta: /home/projects/hpctoolkit/pkgs/hpctoolkit
— eureka: /home/projects/hpctoolkit/x86_64/pkgs/hpctoolkit

• OLCF (Interlagos)
— /ccs/proj/hpctoolkit/pkgs/hpctoolkit-interlagos
— /ccs/proj/hpctoolkit/pkgs/hpcviewer

• NERSC (Hopper)
— /project/projectdirs/hpctk/hpctoolkit-hopper
— /project/projectdirs/hpctk/hpcviewer

• For your local Linux systems, you can download and install it
— documentation, build instructions, and software

– see http://hpctoolkit.org for instructions
— we recommend downloading and building from svn
— important notes: 

– using hardware counters requires downloading and installing PAPI
– kernel support for hardware counters

  on Linux 2.6.32 or better: built-in kernel support for counters
 earlier Linux needs a kernel patch (perfmon2 or perfctr) 42



HPCToolkit Documentation
  http://hpctoolkit.org/documentation.html

• Comprehensive user manual:
 http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide 

– essential overview that almost fits on one page
— Using HPCToolkit with statically linked programs 

– a guide for using hpctoolkit on BG/P and Cray XT 
— The hpcviewer and hpctraceviewer user interfaces
— Effective strategies for analyzing program performance with 

HPCToolkit 
– analyzing scalability, waste, multicore performance ...

— HPCToolkit and MPI 
— HPCToolkit Troubleshooting

– why don’t I have any source code in the viewer?
– hpcviewer isn’t working well over the network ... what can I do?

• Installation guide
43



Using HPCToolkit
• Add hpctoolkit’s bin directory to your path 

— see earlier slide for HPCToolkit’s HOME directory on your system

• Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

• Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -lm ...

• Decide what hardware counters to monitor 
— statically-linked executables (e.g., Cray XT, BG/P)

– use hpclink to link your executable
– launch executable with environment var HPCRUN_EVENT_LIST=LIST

 (BG/P hardware counters supported) 
— dynamically-linked executables (e.g., Linux)

– use hpcrun -L to learn about counters available for profiling
– use papi_avail

 you can sample any event listed as “profilable”
44



Collecting Performance Data
• Collecting traces

— dynamically-linked: hpcrun -t ...
— statically-linked: set environment variable HPCRUN_TRACE=1

• Launching your job using hpctoolkit
— Blue Gene

– qsub -q prod-devel -t 10 -n 2048 -c 8192 \
--env OMP_NUM_THREADS=2:\
HPCRUN_EVENT_LIST=WALLCLOCK@5000:\
HPCRUN_TRACE=1 your_app

— Cray (with WALLCLOCK)
 setenv HPCRUN_EVENT_LIST “WALLCLOCK@5000”
 setenv HPCRUN_TRACE 1
 aprun your_app

— Cray (with hardware performance counters)
– setenv HPCRUN_EVENT_LIST “PAPI_TOT_CYC@3000000 \

    PAPI_L2_MISS@400000 PAPI_TLB_MISS@400000 PAPI_FP_OPS@400000” 
setenv HPCRUN_TRACE 1

 aprun your_app

  
45



Digesting your Performance Data
• Use hpcstruct to reconstruct program structure 

— e.g. hpcstruct your_app
– creates your_app.hpcstruct 

• Correlate measurements to source code with hpcprof and hpcprof-mpi
— run hpcprof on the front-end node to analyze a few processes

– no per-thread profiles
— run hpcprof-mpi on the compute nodes to analyze data in parallel

– includes per-thread profiles to support thread-centric graphical view

• Digesting performance data in parallel with hpcprof-mpi
— run_cmd \

/path/to/hpcprof-mpi \
-S your_app.hpcstruct \
-I /path/to/your_app/src/’*’ \
hpctoolkit-your_app-measurements.jobid

— runcmd
– Cray: aprun
– Blue Gene: qsub -q prod-devel -t 20 -n 32 -m co

46



Analysis and Visualization
• Use hpcviewer to open resulting database

— warning: first time you graph any data, it will pause to combine 
info from all threads into one file

• Use hpctraceviewer to explore traces
— warning: first time you open a trace database, the viewer will 

pause to combine info from all threads into one file

• Try our our user interfaces before collecting your own data
— example performance data for Chombo on hpctoolkit.org

47



A Special Note About hpcstruct and xlf
• IBM’s xlf compiler emits machine code for Fortran that have 

an unusual mapping back to source

• To compensate, hpcstruct needs a special option
— --loop-fwd-subst=no
— without this option, many nested loops will be missing in 

hpcstruct’s output and (as a result) hpcviewer

48



Manual Control of Sampling
• Why?

— get meaningful results when measuring a shorter execution than 
would really be representative. 

— only want to measure solver without measuring initialization.

• How
— Environment variable

– HPCTOOLKIT_DELAY_SAMPLING=1
— API

– hpctoolkit_sampling_start()
– hpctoolkit_sampling_stop()

— Include file
– -I /home/projects/hpctoolkit/ppc64/pkgs/hpctoolkit/include
– #include <hpctoolkit.h>

— Always against API library
– -L /home/projects/hpctoolkit/ppc64/pkgs/hpctoolkit/lib/hpctoolkit \

 -lhpctoolkit
— API is a no-op unless used with hpclink or hpcrun

49



HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior 
over Time

Assess Imbalance 
and Variability 

Associate Costs with DataShift Blame from 
Symptoms to Causes 

Pinpoint & Quantify 
Scaling Bottlenecks

hpctoolkit.org
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior 

• Using HPCToolkit

• Ongoing R&D



Ongoing R&D
• Available in prototype form

— memory leak detection 
— performance analysis of multithreaded code

– pinpoint & quantify insufficient parallelism and parallel overhead
– pinpoint & quantify idleness due to serialization at locks

• Emerging capabilities
— data-centric profiling
— GPU support
— enhanced analysis of OpenMP and multithreading

• Future work
— improving measurement scalability by using parallel file I/O
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Ask Me About
• Filtering traces

• Derived metrics

• Profiling OpenMP

• Profiling hybrid CPU+GPU code

• Data centric performance analysis

• Profiling programs with recursion

• Scalable trace server
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