Unified Parallel C

Yili Zheng
Research Scientist

Computational Research Department
Lawrence Berkeley National Lab

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 2

FIWILEY

UPC

DISTRIBUTED SHARED MEMORY
PROGRAMMING

@ TAREK EL-GHAZAWI
WILLIAM CARLSON, THOMAS STERLING,
AND KATHERINE YELICK

Tuesday, July 24, 12 Unified Parallel C -- YiliZheng 3

Outline

- Overview of UPC

- How does a UPC implementation work
- Examples

- Optimization tips and good practices

- Summary of tools and references

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

Partitioned Global Address Space In UPC

Shared Shared Shared Shared
Segment Segment Segment Segment

Private Private Private Private
Segment Segment Segment Segment

Thread 1 Thread 2 Thread 3 Thread 4

» Global data view abstraction for productivity

= Vertical partitions among threads for locality
control

= Horizontal partitions between shared and private
segments for data placement optimizations

* Friendly to non-cache-coherent architectures

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

One-Sided vs. Two-Sided Messaging

two-sided message (e.g., MPI)

message id data payload

_ network
one-sided put (e.g., UPC) S C e
dest. addr. data payload

- Two-sided messaging
- Message does not contain information about the final
destination; need to look it up on the target node
- Point-to-point synchronization implied with all transfers
- One-sided messaging
- Message contains information about the final destination
- Decouple synchronization from data movement

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

Overview of Unified Parallel C

- C99 extension (PGAS C)
- Partitioned Global Address Space for data sharing
- One-sided communication (Put/Get, Read/Write)
- Loop-level parallelism (upc_forall)

- SPMD execution model
- Total number of threads in the execution: THREADS
- My thread id (0,...,THREADS-1): MYTHREAD

- Widely available
- Open source: Berkeley UPC, GCC UPC
- Commercial: Cray, IBM, HP, SGI

6

- Platforms: Shared-memory, Ethernet, Infiniband, Cray, IBM, ...

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 7

Why Use UPC?

- Pros
- A global address space for shared-memory programming
- One-sided communication is a good match for hardware RDMA
- Can safely reuse non-pthread-safe legacy sequential libraries

- Cons

- Memory consistency model is complicated
- Good news: most users don’t need to worry for common use patterns

- Performance tuning is as hard as other programming models

Example: Hello World

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

int main(..) {
printf("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS);
return O

}

> upcc helloworld.upc
> upcrun —n 4 ./a.out

Thread 1 of 4: hello UPC world
Thread 0 of 4: hello UPC world
Thread 3 of 4: hello UPC world
Thread 2 of 4: hello UPC world

Tuesday, July 24, 12 Unified Parallel C -- YiliZheng 9

How to use UPC on Cray XE / XK

- module swap PrgEnv-pgi PrgEnv-cray
- cc -h upc helloworld.upc
- aprun -n 8 ./a.out

Tuesday, July 24, 12

UPC is simple

- 5 necessary keywords:
- shared
- upc_fence // non-collective
- upc_barrier // imply a fence
- THREADS
- MYTHREAD

- Communication is implicit
- shared int s;
- 8 = 93; /[write (put)
- a =s;// read (get)

Unified Parallel C -- Yili Zheng

10

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 11

Sharing Data

- Static shared data defined in file scope
- shared int j; /* shared scalar variable resides on thread 0 */
- shared int a[10]; /* shared array distributed in round-robin */

- Shared arrays are distributed in a 1-D block-cyclic fashion
over all threads

- shared [blocking_factor] int array[size];

- Example: shared [2] int b[12]; on 4 UPC threads
- logical data layout

- physical data layout

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 12

Data Layouts in a Nutshell

- Static non-array objects have affinity with thread O

- Array layouts are controlled by the blocking factor:
- Empty or [1] (cyclic layout)
shared int == shared [1] int
- [*] (blocked layout)
shared [*] int a[sz] == shared [sz/ THREADS] int a[sZ]

- [0] or [] (indefinite layout, all on 1 thread)
shared [] int == shared [0O] int
- [b] (fixed block size, aka block-cyclic)
- The affinity of an array element AJi] is determined by:
(1 / block size) % THREADS

- M-D arrays linearize elements in row-major format

Tuesday, July 24, 12

UPC Pointers

Global address

Unified Parallel C -- Yili Zheng

Thread, Thread, Thread,

03:77 03T p3:
0 p4: 7| p4: > p4: Shared
®
) -

ptt | A | p1:7 eoo p1:~7

p2: 7 p2: p2: Private
int *p1; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */

shared int *shared p4; /* shared pointer to shared space */

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

Multi-Dimensional Arrays

Static 2-D array: shared [*] double A[M][NI;

Dynamic 2-D array: shared [] double **A;
A[i][]

Shared-memory of Thread 1
A ——> pointers

/|

Shared-memory of Thread 1
Ali]

Shared-memory of Thread 2

A and pointers can be

private and replicated
on all threads. Shared-memory of Thread 2

Tuesday, July 24, 12 Unified Parallel C -- YiliZheng 15

Loop level parallelism

- upc_forall(init; test; loop; affinity)
statement;

upc forall is a collective operation in which, for each execution of the loop
body, the controlling expression and affinity expression are single-valued.

Programmer asserts that the iterations are independent

Affinity expression indicates which iterations will run on each thread.
It may have one of two types:

Integer: (af£inity$THREADS) == MYTHREAD
Pointer: upc_threadof (affinity) == MYTHREAD
upc_forall(i=0; i<N; i++; 1i)
stmt;
equivalent to
for(i=0; i<N; i++)
if (MYTHREAD == i % THREADS) stmt;

Tuesday, July 24, 12 Unified Parallel C -- YiliZheng 16

Synchronization - Locks

Locks in UPC are represented by an opaque type:
upc _lock t
- Locks must be allocated before use:
upc_lock t *upc all lock alloc(void);
collective call - allocates 1 lock, same pointer to all threads
upc_lock t *upc global lock alloc(void) ;
non-collective - allocates 1 lock per caller
- To use a lock:
void upc lock (upc lock t *1)

void upc unlock (upc lock t *1)
use at start and end of critical region
- Locks can be freed when not in use
void upc lock free(upc lock t *ptr);

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 17

UPC Global Synchronization

- UPC has two basic forms of barriers:
Barrier: block until all other threads arrive
upc_barrier
Split-phase barriers
upc _notify; this thread is ready for barrier
do computation unrelated to barrier
upc wait; wait for others to be ready

- Optional labels allow for debugging
#define MERGE BARRIER 12
if (MYTHREAD%2 == 0) {

upc_barrier MERGE BARRIER;
} else {

upc_barrier MERGE BARRIER;

Tuesday, July 24, 12 Unified Parallel C -- YiliZheng 18

Bulk Data Movement and Nonblocking
Communication

- Loops to perform element-wise data movement could
potentially be slow because of network traffic per element

- Language introduces variants of memcpy to address this
ISsue:
upc_memcpy (shared void * restrict dst,
shared const void * restrict src, size t n)
upc_memput (shared void * restrict dst,
const void * restrict src, size _t n)
upc_memget (void * restrict dst,
shared const void * restrict src, size t n)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 19

Data Movement Collectives

- upc_all broadcast(shared void* dst, shared void* src, size t nbytes,

)

- upc_all _scatter(shared void* dst, shared void *src, size t nbytes, ...)
- upc_all gather(shared void* dst, shared void *src, size t nbytes, ...)
- upc_all gather all(shared void* dst, shared void *src, size t nbytes,

)

- upc_all_exchange(shared void* dst, shared void *src, size t nbytes,

)

- upc_all _permute(shared void* dst, shared void *src, shared int* perm,
size_tnbytes, ...)

- Each threads copies a block of memory and sends it to thread in
perm(i]

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 20

Computational Collectives

upc_all _reduceT(shared void* dst, shared void* src,

upc op _top, ...)
data type T: char, short, int, float, double, long long
double,...

upc op_t: +, %, &, |, xor, &&, ||, min, max
upc_all reduceT computes:

7
S Ali] o
=0

upc_all_prefix_reduceT(shared void* dst, shared void *src,

upc _op _top, ...)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

Example: Jacobi (5-point stencil)

shared [ngrid*ngrid/THREADS] double u[ngrid][ngrid];
shared [ngrid*ngrid/THREADS] double unew[ngrid][ngrid];
shared [ngrid*ngrid/THREADS] double f[ngrid][ngrid];

upc_forall(int i=1; i<n; i++; &unewli][0]) {
for(int j=1; j<n; j++) {
utmp = 0.25 * (uli+11[j] + uli-11[] + ulil[j+1] + ulillj-1] -
h*h*f[il[j]); /* 5-point stencil */
unewli][j] = omega * utmp + (1.0-omega)*uli][jl;
}
}

- Good spatial locality
- Mostly local memory accesses

- No explicit communication ghost-
zone management

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

Example: Random Access (GUPS)

shared uint64 Table[TableSize]; /* cyclic distribution */
uinté4 i, ran;

/* owner computes, iteration matches data distribution */
upc_forall (i = 0; i < TableSize; i++; i) Table[i] = i;

upc_barrier; /* synchronization */
ran = starts(NUPDATE / THREADS * MYTHREAD); /* ran. seed */

for (i = MYTHREAD; i < NUPDATE; i+=THREADS) /* SPMD */
{
ran = (ran << 1) A (((inté4_1) ran < 0) ? POLY : 0);
Table[ran & (TableSize-1)] = Table[ran & (TableSize-1)] A ran;
}

upc_barrier; /* synchronization */ The MPI version is about 150

lines due to message
aggregation.

Tuesday, July 24, 12

Unified Parallel C -- Yili Zheng 23

UPC Compiler Implementation

Source-to-source translator

UPC code

UPC source-to-source

translator

C code

- Pros: portable

- Cons: may lose program
information in two-phase
compilation

- Example: Berkeley UPC

Source-to-object-code compiler

UPC code

UPC source-to-object

code complier

Assembly code

- Pros: easier to implement
UPC specific optimization
- Cons: less portable

- Example: GCC UPC and
most vendor UPC

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 24

Programming models on BlueGene/P

UPC Apps MPI Apps

CAF BUPC IBM XL UPC Compiler
Runtime Runtime
GASNet DCMF Conduit IBM PGAS Runtime MPICH2 BGP Port

IBM DCMF Messaging Library

CAF
Compiler

BUPC
Compiler

BlueGene/P Networks (Torus, Collective and Barrier)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

Berkeley UPC Software Stack

UPC Applications

UPC-to-C Translator

Translated C code with Runtime Calls

UPEC Runtime

GASNet Communication Library

{ Network Drivers and OS Libr.

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

Translation and Call Graph Example

shared [] int * shared sp;
*sp = a;

< L
UPC-to-C Translator
< L

UPCR_PUT_PSHARED_VAL(sp, a);

UPC Runtime
< L

No Ye
S
v v

gasnet_put(sp, a); memcpy(sp, a);

g gl
GASNet

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 27

Casting Shared-Pointer to Local

Kernel code of the STREAM benchmark using shared-pointers

shared [] double *sa, *sb, *sc;
for (i=0; i<nelems; i++) {
sa[i] = sb[i] + alpha * sc[i];

¥

Kernel code of the STREAM benchmark using local pointers

shared [] double *sa, *sb, *sc;
double *a, *b, *c;
a=(double *)sa; b=(double *)sb; c=(double *)sc;
for (i=0; i<nelems; i++) {
a[i] = b[i] + alpha * c[i];
}

Tuesday, July 24, 12

Shared Data Access Performance: Local
Pointer vs. Pointer-to-shared

Time (ns)

900

800

700

600

w
o
o

Shared Data Access Time on 32-core AMD

=&—Local pointer

== Pointer-to-shared Berkeley UPC

===Pointer-to-shared GCCUPC /

8 16 32 64 128 256 512

Data Size (bytes)

Time (ns)

Unified Parallel C -- Yili Zheng

28

Shared Data Access Time on 8-core Intel

800

=&—Local pointer

700

=#—Pointer-to-shared Berkeley UPC

===Pointer-to-shared GCCUPC

8 16 32 64 128
Data Size (bytes)

256

512

Unified Parallel C -- Yili Zheng 29

Tuesday, July 24, 12

Use Physical Shared-Memory for Inter-

Process Communication

- Cast a pointer-to-shared affined to another thread but can
be accessed directly by hardware load and store
- void * upc_cast(shared void *ptr);
- Castability query:
- int upc_castable(shared void *ptr);
- int upc_thread_castable(unsigned int threadnum);

- Implemented by cross-mapping physical memory to virtual
address spaces of all processes sharing the node

- Save memory space and copy overheads that would be
otherwise introduced by bounce-buffers

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 30

Memory Consistency Models

- UPC supports two memory consistency models: strict and
relaxed

- Strict consistency
- Usage: #pragma upc strict or strict shared [] double *sa;
- Provide a total ordering for all memory accesses
- Easy to reasoning about but takes a huge performance penalty

- Relaxed consistency
- Usage: #pragma upc relaxed or relaxed shared [] double *sa;

- Allow concurrent and out-of-order data accesses within a
synchronization phase

- Deliver better performance but may introduce data races if
synchronization is done correctly
- In practice
- Use the relaxed consistency model (default) until encountering errors
- Use the strict consistency model for testing and debugging

Unified Parallel C -- Yili Zheng 31

Tuesday, July 24, 12

Memory Consistency Performance:
Relaxed vs. Strict

Shared Data Access Time on 32-Core AMD

Shared Data Access Time on 8-Core Intel

2000 2500
_ =—&—Relaxed consistency ’
=—&—Relaxed consistency 2000
1500 ==Strict consistency
= Strict consistency
—_ — 1500
w w
= =
o 1000 ()
£ £
= = 1000
500
500
0 - T T T 0 -
8 16 32 64 128 256 8 16 32 64 128 256
Data Size (bytes)

Data Size (bytes)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 32

Example: Matrix Transpose

shared double *sa, *sb; - Global array view may
size t N; tempt you to use a naive
Implementation

upc_forall(i=0; i<N; i++; i) Correct but very poor

{

for (3=0; <N; j++) performance
{ - All fine-grained accesses
1j = 1*N+3; - No data locality

i = JHEN+i;
sb[1j] = sa[]ji];

- Difficult to vectorize

Tuesday, July 24, 12 Unified Parallel C -- YiliZheng 33

Example: Optimized Matrix Transpose

o - Use a block data layout

- Transpose data blocks by

1 s data bl
a collective operation

oano -
- Transpose the elements In

B the block locally

B = N/THREADS;
nbytes = sizeof(double)*B*B;
upc_all exchange(sb, sa, nbytes, UPC_IN_MYSYNC|UPC_OUT_MYSYNC);

/* local transpose */

for (t=0; t<THREADS; t++) {
la = (double *)&sa[MYTHREAD] + B*B*t;
1b = (double *)&sb[MYTHREAD] + B*B*t;
local transpose(la, 1b, B);

}

Tuesday, July 24, 12

Unified Parallel C -- Yili Zheng 34

Matrix Transpose Performance

Transpose on 32-Core AMD

160000

=&—Collective
140000

=—-Naive f
120000

100000 /

Time (us)

80000 /

60000 /

40000
20000 “ A

. 4,44/

256 512 1024 2048
Data Size (bytes)

Transpose on 8-Core Intel

80000
=o—Collective r

70000
== Naive /

60000 /

50000 /

Time (us)

40000 /

30000 /

20000 /J

10000 ././ /
0 ¢

256 512 1024 2048
Data Size (bytes)

Tuesday, July 24, 12 Unified Parallel C -- YiliZheng 35

Example : Matrix Multiplication

shared double A[M][P], B[P][N], C[M][N];

for (int i=0; i<M; i++;)
upc_forall (int j=0; j<N; j++; &C[i][37])
for (int k=0; k<P; k++)
C[i][3] += A[i][k]*B[k][3];

- Naive implementation is very slow

- Many fine-grained remote accesses

- Recurring overheads in access through pointers-to-shared

- Do not have optimization for the sequential part, such as register

blocking , cache blocking and vectorization

- But it is really simply to write if you don’t care about

performance (such as in prototyping or non-critical path)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

Optimized UPC Parallel DGEMM

(i
a0 =ﬂ=

\ !
200

aao ﬂ

0
Do

DDDC ODDD
- 2-D block-cyclic data layout

- Use parallel algorithms such as SUMMA
- Transfer data in large blocks
- Use optimized BLAS dgemm (e.g., Intel MKL)

- Use non-blocking collective communication if available (e.g.,
row and column broadcasts)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 37

Matrix Multiplication Performance

32-Core AMD (Opteron 8387) 8-Core Intel (Xeon E5530)
250 80
B UPC with ACML B UPC with Intel MKL
. 70
200 “ ACML with OpenMP H |ntel MKL with OpenMP

60

50
150 .
-4 o

3 é 40
G] G

100

50
10
1 2 4 8 16 32

Number of Cores

Number of Cores

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

Example: 3-D FFT

- 2-D Data Partitioning

- Row-column algorithm with
overlapping local FFT and
transpose (all-to-all
communication)

- UPC non-blocking operations
enabled fine-grained
overlapping for better
performance

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 39

FFT Performance on Multi-Core

Performance of 3D-FFT (512x256x256) on 32-core AMD (Mflops)

Threads 14 8 16132

FFTW 4561.3 7338.7 8756.4 8365.5

UPC with 2306.61 4242.28 7210.87 9849.7
FFTW

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng

FFT Performance on BlueGene/P

3-D FFT Weak Scaling Performance on IBM BlueGene/P

10000
— — Ideal Peak
=@—UPC Collectives (Slabs) _ -
—#—=UPC Collectives (Packed Slabs) - -
—>MPI Collecitves (Packed Slabs) - o)
O
1000 O
2 O
o
L.
O
100
10 T T T T T T T |

256 512 1024 2048 4096 8192 16384 32768
Cores

Pitfalls in Programming with UPC

- Abuse fine-grained inter-node data accesses — generate
tons of tiny data packets

- Flood data from many to one — congest the network

- Share everything and access data uniformly — forget
about data localities and NUMA issues

- Use excessive locking/unlocking — lock operations are
expensive, especially on distributed-memory systems

- Hand code common math functions (instead of using

optimized libraries such as BLAS, FFTW, INTEL MKL,
IBM ESSL,...)

Performance Penalty!

UPC Programming Tips

Use local pointer to access the local part of
shared data by casting pointer-to-shared to local
pointer

Leverage data affinity information and manage

shared data layout to minimize remote accesses
(both inter-node and NUMA)

Use non-blocking communication if available
Use collectives
Use remote atomic operations if available

UPC one for two?

Hybrid Programming Styles with UPC
fine-grained (shared memory style)
bulk synchronous (message passing style)

Hybrid Execution with UPC

Map UPC threads hierarchically to groups of Pthreads

Threads within a process share resources and the same virtual
address space

Processes within a node use physically shared memory for fast
communication

Inter-node communication uses the network
Balance resource sharing and isolation

Too much sharing: resource contention (lower performance), prone
to race conditions

No sharing: resource idling (lower throughput)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 44

Interoperability: Mix it up

- UPC with other sequential languages: C++, FORTRAN

- MPI with UPC

- Each MPI process is also a UPC thread

- Each MPI process spawns a few UPC threads. MPI for inter-
process communication and UPC for intra-process communication

- UPC with OpenMP

- Map each UPC thread to an OS process and spawn OpenMP
threads

- UPC with CUDA and OpenCL
- Similar to MPIl + CUDA/OpenCL

Tuesday, July 24, 12 Unified Parallel C -- YiliZheng 45

UPC 1.3

- Coming this Fall

- Main features

- Non-blocking memory copy operations
- Implicit non-blocking memory operations — fire and forget
© upc_memcpy_nbi(...);
- upc_fence;

- UPC atomics
- CAS
- Op
- Fetch and Op

- High precision timers

- Collective memory deallocation (upc_all_free)

- Many bug fixes and clarifications
- http://code.google.com/p/upc-specification/

Tools

Eclipse Parallel Tools Platform (PTP)
http://www.eclipse.org/ptp/

Parallel Performance Wizard (PPW)
http://ppw.hcs.ufl.edu/

GDB UPC
http://www.gccupc.org/gdb-upc-info/debugging-with-gdb-upc

Totalview

Distributed Debugging Tool (DDT) from Allinea Software

All other parallel computing tools for multi-process and
multi-thread programs

Executing a UPC program is just like running a normal multi-
process/multi-thread program from the OS’s perspective.

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 47

Resources and Contacts

- Web sites::
- UPC community portal: http://upc.gwu.edu
- IBM XL UPC: http://www.alphaworks.ibm.com/tech/upccompiler
- GCC UPC: http://www.gccupc.org
- Berkeley UPC: http://upc.lbl.gov

- Email lists:
- UPC Mailing Lists: http://upc.gwu.edu/upc_mail_group.html
- public Berkeley UPC users list: upc-users@lbl.gov
- Berkeley UPC/GASNet developers: upc-devel@lbl.gov

THANK YOU!

