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Outline 
• Overview of UPC 
• How does a UPC implementation work 
• Examples 
• Optimization tips and good practices 
• Summary of tools and references 
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Partitioned Global Address Space In UPC 

Thread 1 Thread 2 Thread 3 Thread 4 

§  Global data view abstraction for productivity 
§  Vertical partitions among threads for locality 

control 
§  Horizontal partitions between shared and private 

segments  for data placement optimizations 
§  Friendly to non-cache-coherent architectures 
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One-Sided vs. Two-Sided Messaging 

•  Two-sided messaging 
•  Message does not contain information about the final 

destination; need to look it up on the target node 
•  Point-to-point synchronization implied with all transfers 

•  One-sided messaging 
•  Message contains information about the final destination 
•  Decouple synchronization from data movement 
 

dest. addr. 
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data payload 

data payload 
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Overview of Unified Parallel C 
• C99 extension (PGAS C) 

•  Partitioned Global Address Space for data sharing 
•  One-sided communication (Put/Get, Read/Write) 
•  Loop-level parallelism (upc_forall) 

• SPMD execution model  
•  Total number of threads in the execution: THREADS 
•  My thread id (0,…,THREADS-1): MYTHREAD 

• Widely available 
•  Open source: Berkeley UPC, GCC UPC 
•  Commercial: Cray, IBM, HP, SGI 
•  Platforms: Shared-memory, Ethernet, Infiniband, Cray, IBM, … 
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Why Use UPC? 
• Pros 

•  A global address space for shared-memory programming 
•  One-sided communication is a good match for hardware RDMA 
•  Can safely reuse non-pthread-safe legacy sequential libraries 

• Cons 
•  Memory consistency model is complicated 

•  Good news: most users don’t need to worry for common use patterns 
•  Performance tuning is as hard as other programming models  
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Example: Hello World 
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#include	
  <upc.h>	
  	
  /*	
  needed	
  for	
  UPC	
  extensions	
  */	
  
#include	
  <stdio.h>	
  
	
  
int	
  main(…)	
  {	
  
	
  	
  printf("Thread	
  %d	
  of	
  %d:	
  hello	
  UPC	
  world\n",	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  MYTHREAD,	
  THREADS);	
  
	
  	
  return	
  0	
  
}	
  
 

> upcc helloworld.upc 
> upcrun –n 4 ./a.out 
 
Thread 1 of 4: hello UPC world 
Thread 0 of 4: hello UPC world 
Thread 3 of 4: hello UPC world 
Thread 2 of 4: hello UPC world 



How to use UPC on Cray XE / XK 
• module swap PrgEnv-pgi PrgEnv-cray 
•  cc -h upc helloworld.upc 
•  aprun -n 8 ./a.out 
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UPC is simple 
•  5 necessary keywords: 

•  shared 
•  upc_fence // non-collective 
•  upc_barrier // imply a fence 
•  THREADS 
•  MYTHREAD 

• Communication is implicit  
•  shared int s; 
•  s = 5; // write (put) 
•  a = s; // read (get) 
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Sharing Data 
• Static shared data defined in file scope 

•  shared int j; /* shared scalar variable resides on thread 0 */ 
•  shared int a[10]; /* shared array distributed in round-robin */ 

• Shared arrays are distributed in a 1-D block-cyclic fashion 
over all threads 
•  shared [blocking_factor]  int array[size]; 
•  Example: shared [2] int b[12]; on 4 UPC threads 

•  logical data layout  

•  physical data layout 
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Data Layouts in a Nutshell 
• Static non-array objects have affinity with thread 0 
• Array layouts are controlled by the blocking factor: 

• Empty or [1] (cyclic layout) 
shared int == shared [1] int 

•  [*] (blocked layout) 
shared [*] int a[sz] == shared [sz/THREADS] int a[sz] 

•  [0] or [] (indefinite layout, all on 1 thread) 
 shared [] int == shared [0] int 

•  [b] (fixed block size, aka block-cyclic) 

• The affinity of an array element A[i] is determined by: 
        (i / block_size) % THREADS 

• M-D arrays linearize elements in row-major format 
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UPC Pointers 

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int *shared p4; /* shared pointer to shared space */ 
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Multi-Dimensional Arrays 

Shared-memory of Thread 1  

Shared-memory of Thread 1  

Shared-memory of Thread 2  

Shared-memory of Thread 2  

pointers A 

Static 2-D array:  shared [*] double A[M][N]; 
 

Dynamic 2-D array:  shared [] double **A; 
 

A[i] 

A and pointers can be 
private and replicated 
on all threads. 

A[i][j] 
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•  upc_forall(init;	
  test;	
  loop;	
  affinity)	
  
	
  	
  	
  	
  	
  	
  statement;	
  

•  upc forall is a collective operation in which, for each execution of the loop 
body, the controlling expression and affinity expression are single-valued. 

•  Programmer asserts that the iterations are independent 
•  Affinity expression indicates which iterations will run on each thread. 

It may have one of two types: 
•  Integer: (affinity%THREADS) == MYTHREAD 
•  Pointer: upc_threadof(affinity) == MYTHREAD 
  upc_forall(i=0;	
  i<N;	
  i++;	
  i)	
  	
  
	
  	
   	
  stmt; 

  equivalent to  

 for(i=0;	
  i<N;	
  i++)	
  	
  
	
  	
   	
  if	
  (MYTHREAD	
  ==	
  i	
  %	
  THREADS)	
  stmt;	
  

 

Loop level parallelism 
Tuesday, July 24, 12 15 Unified Parallel C -- Yili Zheng 



Synchronization - Locks 
•  Locks in UPC are represented by an opaque type: 

upc_lock_t 

•  Locks must be allocated before use: 
upc_lock_t *upc_all_lock_alloc(void); 
  collective call - allocates 1 lock, same pointer to all threads 
upc_lock_t *upc_global_lock_alloc(void); 
     non-collective - allocates 1 lock per caller 

•  To use a lock: 
void upc_lock(upc_lock_t *l) 
void upc_unlock(upc_lock_t *l) 
  use at start and end of critical region 

•  Locks can be freed when not in use 
void upc_lock_free(upc_lock_t *ptr); 
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UPC Global Synchronization 
•  UPC has two basic forms of barriers: 

•  Barrier: block until all other threads arrive  
 upc_barrier 

•  Split-phase barriers 
   upc_notify;  this thread is ready for barrier 
      do computation unrelated to barrier 
   upc_wait;      wait for others to be ready 

•  Optional labels allow for debugging 
#define MERGE_BARRIER 12 
if (MYTHREAD%2 == 0) { 
     ... 
     upc_barrier MERGE_BARRIER;   
} else { 
     ... 
     upc_barrier MERGE_BARRIER; 
} 
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Bulk Data Movement and Nonblocking 
Communication 
•  Loops to perform element-wise data movement could 

potentially be slow because of network traffic per element 
•  Language introduces variants of memcpy to address this 

issue: 
upc_memcpy (shared void * restrict dst,  
                        shared const void * restrict src, size_t n)  
upc_memput (shared void * restrict dst,  
                        const void * restrict src, size_t n)  
upc_memget (void * restrict dst,  
                        shared const void * restrict src, size_t n)  
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Data Movement Collectives 
•  upc_all_broadcast(shared void* dst, shared void* src, size_t nbytes, 

…) 
•  upc_all_scatter(shared void* dst, shared void *src, size_t nbytes, …) 
•  upc_all_gather(shared void* dst, shared void *src, size_t nbytes, …) 
•  upc_all_gather_all(shared void* dst, shared void *src, size_t nbytes, 

…) 
•  upc_all_exchange(shared void* dst, shared void *src, size_t nbytes, 

…) 
•  upc_all_permute(shared void* dst, shared void *src, shared int* perm, 

size_t nbytes, …) 
•  Each threads copies a block of memory and sends it to thread in 

perm[i] 
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Computational Collectives 
upc_all_reduceT(shared void* dst, shared void* src,                      
                            upc_op_t op, …) 
  data type T: char, short, int, float, double, long long 

double,… 
 upc_op_t: +, *, &, |, xor, &&, ||, min, max 

upc_all_reduceT computes: 
 
 
 
upc_all_prefix_reduceT(shared void* dst, shared void *src,             
                                       upc_op_t op, …) 
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Example: Jacobi (5-point stencil) 

• Good spatial locality 
• Mostly local memory accesses 
• No explicit communication ghost-

zone management 

shared [ngrid*ngrid/THREADS] double u[ngrid][ngrid]; 
shared [ngrid*ngrid/THREADS] double unew[ngrid][ngrid]; 
shared [ngrid*ngrid/THREADS] double f[ngrid][ngrid];  
 
upc_forall( int i=1; i<n; i++; &unew[i][0] ) { 
      for(int j=1; j<n; j++) { 
        utmp = 0.25 * (u[i+1][j] + u[i-1][j] + u[i][j+1] + u[i][j-1] - 
                       h*h*f[i][j]); /* 5-point stencil */ 
        unew[i][j] = omega * utmp + (1.0-omega)*u[i][j]; 
      } 
    } 
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Example: Random Access (GUPS) 
shared uint64 Table[TableSize]; /* cyclic distribution */ 
uint64 i, ran; 
 
/* owner computes, iteration matches data distribution */ 
upc_forall (i = 0; i < TableSize; i++; i)    Table[i] = i; 
 
upc_barrier; /* synchronization */ 
 
ran = starts(NUPDATE / THREADS * MYTHREAD); /* ran. seed */ 
 
for (i = MYTHREAD; i < NUPDATE; i+=THREADS) /* SPMD */ 
  { 
    ran = (ran << 1) ^ (((int64_1) ran < 0) ? POLY : 0); 
    Table[ran & (TableSize-1)] = Table[ran & (TableSize-1)] ^ ran; 
  } 
upc_barrier; /* synchronization */ 
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The MPI version is  about 150 
lines due to message 
aggregation. 



UPC Compiler Implementation 

Source-to-source translator 

• Pros: portable 
• Cons: may lose program 

information in two-phase 
compilation 

• Example: Berkeley UPC 

Source-to-object-code compiler  

• Pros: easier to implement 
UPC specific optimization 

• Cons: less portable 
• Example: GCC UPC and 

most vendor UPC 
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Programming models on BlueGene/P 

IBM DCMF Messaging Library 

MPICH2 BGP Port 

MPI Apps 

GASNet DCMF Conduit 

BUPC 
Runtime 

CAF 
Runtime 

UPC Apps 

IBM PGAS Runtime 

BlueGene/P Networks (Torus, Collective and Barrier) 
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IBM XL UPC Compiler 
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Berkeley UPC Software Stack 

UPC-to-C Translator 

UPC Applications 

UPC Runtime 

GASNet Communication Library  

Network Drivers and OS Libraries 

Translated C code with Runtime Calls 
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Translation and Call Graph Example 
shared [] int * shared sp; 
*sp = a; 
 

UPC-to-C Translator 

UPCR_PUT_PSHARED_VAL(sp, a); 

gasnet_put(sp, a); memcpy(sp, a); 

UPC Runtime 

GASNet Memory Access 

Is *sp 
local? 

No Ye
s 
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Casting Shared-Pointer to Local 
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shared	
  []	
  double	
  *sa,	
  *sb,	
  *sc;	
  
for	
  (i=0;	
  i<nelems;	
  i++)	
  {	
  
	
  	
  sa[i]	
  =	
  sb[i]	
  +	
  alpha	
  *	
  sc[i];	
  
}	
  

shared	
  []	
  double	
  *sa,	
  *sb,	
  *sc;	
  
double	
  *a,	
  *b,	
  *c;	
  
a=(double	
  *)sa;	
  b=(double	
  *)sb;	
  c=(double	
  *)sc;	
  
for	
  (i=0;	
  i<nelems;	
  i++)	
  {	
  
	
  	
  a[i]	
  =	
  b[i]	
  +	
  alpha	
  *	
  c[i];	
  
}	
  

Kernel code of the STREAM benchmark using shared-pointers 

Kernel code of the STREAM benchmark using local pointers 



Shared Data Access Performance: Local 
Pointer vs. Pointer-to-shared 
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Use Physical Shared-Memory for Inter-
Process Communication 
• Cast a pointer-to-shared affined to another thread but can 

be accessed directly by hardware load and store  
•  void * upc_cast(shared void *ptr); 
•  Castability query: 

•  int upc_castable(shared void *ptr);  
•  int upc_thread_castable(unsigned int threadnum);  

•  Implemented by cross-mapping physical memory to virtual 
address spaces of all processes sharing the node 

• Save memory space and copy overheads that would be 
otherwise introduced by bounce-buffers 
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Memory Consistency Models 
•  UPC supports two memory consistency models: strict and 

relaxed 
•  Strict consistency 

•  Usage: #pragma upc strict or strict shared [ ] double *sa; 
•  Provide a total ordering for all memory accesses  
•  Easy to reasoning about but takes a huge performance penalty 

•  Relaxed consistency  
•  Usage: #pragma upc relaxed or relaxed shared [ ] double *sa; 
•  Allow concurrent and out-of-order data accesses within a 

synchronization phase 
•  Deliver better performance but may introduce data races if 

synchronization is done correctly 
•  In practice 

•  Use the relaxed consistency model (default) until encountering errors 
•  Use the strict consistency model for testing and debugging 
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Memory Consistency Performance: 
Relaxed vs. Strict 
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Example: Matrix Transpose 
• Global array view may 

tempt you to use a naïve 
implementation 

• Correct but very poor 
performance 
•  All fine-grained accesses 
•  No data locality 
•  Difficult to vectorize 
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shared	
  double	
  *sa,	
  *sb;	
  
size_t	
  N;	
  
	
  
upc_forall(i=0;	
  i<N;	
  i++;	
  i)	
  	
  
{	
  
	
  	
  	
  	
  for	
  (j=0;	
  j<N;	
  j++)	
  	
  
	
  	
  	
  	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  ij	
  =	
  i*N+j;	
  
	
  	
  	
  	
  	
  	
  	
  	
  ji	
  =	
  j*N+i;	
  
	
  	
  	
  	
  	
  	
  	
  	
  sb[ij]	
  =	
  sa[ji];	
  
	
  	
  	
  	
  }	
  
	
  	
  }	
  



Example: Optimized Matrix Transpose 

• Use a block data layout 
•  Transpose data blocks by 

a collective operation 
•  Transpose the elements in 

the block locally  
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B	
  =	
  N/THREADS;	
  
nbytes	
  =	
  sizeof(double)*B*B;	
  
upc_all_exchange(sb,	
  sa,	
  nbytes,	
  UPC_IN_MYSYNC|UPC_OUT_MYSYNC);	
  
	
  
/*	
  local	
  transpose	
  */	
  
for	
  (t=0;	
  t<THREADS;	
  t++)	
  {	
  
	
  	
  la	
  =	
  (double	
  *)&sa[MYTHREAD]	
  +	
  B*B*t;	
  
	
  	
  lb	
  =	
  (double	
  *)&sb[MYTHREAD]	
  +	
  B*B*t;	
  
	
  	
  local_transpose(la,	
  lb,	
  B);	
  
}	
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Matrix Transpose Performance 
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Example : Matrix Multiplication 

• Naïve implementation is very slow 
•  Many fine-grained remote accesses 
•  Recurring overheads in access through pointers-to-shared 
•  Do not have optimization for the sequential part, such as register 

blocking , cache blocking and vectorization 

• But it is really simply to write if you don’t care about 
performance (such as in prototyping or non-critical path) 
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shared	
  double	
  A[M][P],	
  B[P][N],	
  C[M][N];	
  
	
  
for	
  (int	
  i=0;	
  i<M;	
  i++;)	
  
	
  	
  upc_forall	
  (int	
  j=0;	
  j<N;	
  j++;	
  &C[i][j])	
  
	
  	
  	
  	
  for	
  (int	
  k=0;	
  k<P;	
  k++)	
  
	
  	
  	
  	
  	
  	
  C[i][j]	
  +=	
  A[i][k]*B[k][j];	
  



Optimized UPC Parallel DGEMM 

•  2-D block-cyclic data layout 
•  Use parallel algorithms such as SUMMA  
•  Transfer data in large blocks 
•  Use optimized BLAS dgemm (e.g., Intel MKL) 
•  Use non-blocking collective communication if available (e.g., 

row and column broadcasts) 
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Matrix Multiplication Performance 

32-Core AMD (Opteron 8387) 8-Core Intel (Xeon E5530)  
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Example: 3-D FFT 
•  2-D Data Partitioning 
• Row-column algorithm with 

overlapping local FFT and 
transpose (all-to-all 
communication) 

• UPC non-blocking operations 
enabled fine-grained 
overlapping for better 
performance 
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FFT Performance on Multi-Core 

Threads 4 8 16 32 
FFTW  4561.3 7338.7 8756.4  8365.5 
UPC with 
FFTW 

2306.61  4242.28 7210.87 9849.7 
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Performance of 3D-FFT (512x256x256) on 32-core AMD (Mflops) 
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Pitfalls in Programming with UPC 
• Abuse fine-grained inter-node data accesses – generate 

tons of tiny data packets 
•  Flood data from many to one – congest the network 
• Share everything and access data uniformly – forget 

about data localities and NUMA issues 
• Use excessive locking/unlocking – lock operations are 

expensive, especially on distributed-memory systems 
• Hand code common math functions (instead of using 

optimized libraries such as BLAS, FFTW, INTEL MKL, 
IBM ESSL,…) 
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UPC Programming Tips 
• Use local pointer to access the local part of 
shared data by casting pointer-to-shared to local 
pointer 

• Leverage data affinity information and manage 
shared data layout to minimize remote accesses 
(both inter-node and NUMA) 

• Use non-blocking communication if available 
• Use collectives 
• Use remote atomic operations if available  
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UPC one for two?  
•  Hybrid Programming Styles with UPC  

•  fine-grained (shared memory style) 
•  bulk synchronous (message passing style) 

•  Hybrid Execution with UPC 
•  Map UPC threads hierarchically to groups of Pthreads 

•  Threads within a process share resources and the same virtual 
address space 

•  Processes within a node use physically shared memory for fast 
communication 

•  Inter-node communication uses the network 
•  Balance resource sharing and isolation 

•  Too much sharing: resource contention (lower performance), prone 
to race conditions 

•  No sharing: resource idling (lower throughput) 
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Interoperability: Mix it up 
 
• UPC with other sequential languages: C++, FORTRAN 
• MPI with UPC 

•  Each MPI process is also a UPC thread 
•  Each MPI process spawns a few UPC threads.  MPI for inter-

process communication and UPC for intra-process communication 

• UPC with OpenMP 
•  Map each UPC thread to an OS process and spawn OpenMP 

threads  

• UPC with CUDA and OpenCL 
•  Similar to MPI + CUDA/OpenCL 
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UPC 1.3 
• Coming this Fall 
• Main features 

•  Non-blocking memory copy operations 
•  Implicit non-blocking memory operations – fire and forget 
•  upc_memcpy_nbi(…); 
•  upc_fence; 

•  UPC atomics 
•  CAS 
•  Op 
•  Fetch and Op 

•  High precision timers 
•  Collective memory deallocation (upc_all_free) 

• Many bug fixes and clarifications 
•  http://code.google.com/p/upc-specification/ 
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Tools 
• Eclipse Parallel Tools Platform (PTP) 

•  http://www.eclipse.org/ptp/ 

• Parallel Performance Wizard (PPW)  
•  http://ppw.hcs.ufl.edu/ 

• GDB UPC 
•  http://www.gccupc.org/gdb-upc-info/debugging-with-gdb-upc 

•  Totalview 
• Distributed Debugging Tool (DDT) from Allinea Software 
• All other parallel computing tools for multi-process and 

multi-thread programs 
•  Executing a UPC program is just like running a normal multi-

process/multi-thread program from the OS’s perspective.   
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Resources and Contacts 
• Web sites:: 

•  UPC community portal: http://upc.gwu.edu 
•  IBM XL UPC: http://www.alphaworks.ibm.com/tech/upccompiler 
•  GCC UPC: http://www.gccupc.org 
•  Berkeley UPC: http://upc.lbl.gov  

• Email lists: 
•  UPC Mailing Lists: http://upc.gwu.edu/upc_mail_group.html 
•  public Berkeley UPC users list: upc-users@lbl.gov 
•  Berkeley UPC/GASNet developers: upc-devel@lbl.gov 
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THANK YOU! 


