
Unified	
 Parallel	
 C	

Yili Zheng
Research Scientist
Computational Research Department
Lawrence Berkeley National Lab

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 2

Outline
• Overview of UPC
• How does a UPC implementation work
• Examples
• Optimization tips and good practices
• Summary of tools and references

Tuesday, July 24, 12 3 Unified Parallel C -- Yili Zheng

Partitioned Global Address Space In UPC

Thread 1 Thread 2 Thread 3 Thread 4

§  Global data view abstraction for productivity
§  Vertical partitions among threads for locality

control
§  Horizontal partitions between shared and private

segments for data placement optimizations
§  Friendly to non-cache-coherent architectures

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

4 Unified Parallel C -- Yili Zheng Tuesday, July 24, 12

One-Sided vs. Two-Sided Messaging

•  Two-sided messaging
•  Message does not contain information about the final

destination; need to look it up on the target node
•  Point-to-point synchronization implied with all transfers

•  One-sided messaging
•  Message contains information about the final destination
•  Decouple synchronization from data movement

dest. addr.

message id

data payload

data payload

one-sided put (e.g., UPC)

two-sided message (e.g., MPI)

network
 interface

memory

host
CPU

5 Unified Parallel C -- Yili Zheng Tuesday, July 24, 12

Overview of Unified Parallel C
• C99 extension (PGAS C)

•  Partitioned Global Address Space for data sharing
•  One-sided communication (Put/Get, Read/Write)
•  Loop-level parallelism (upc_forall)

• SPMD execution model
•  Total number of threads in the execution: THREADS
•  My thread id (0,…,THREADS-1): MYTHREAD

• Widely available
•  Open source: Berkeley UPC, GCC UPC
•  Commercial: Cray, IBM, HP, SGI
•  Platforms: Shared-memory, Ethernet, Infiniband, Cray, IBM, …

Tuesday, July 24, 12 6 Unified Parallel C -- Yili Zheng

Why Use UPC?
• Pros

•  A global address space for shared-memory programming
•  One-sided communication is a good match for hardware RDMA
•  Can safely reuse non-pthread-safe legacy sequential libraries

• Cons
•  Memory consistency model is complicated

•  Good news: most users don’t need to worry for common use patterns
•  Performance tuning is as hard as other programming models

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 7

Example: Hello World

Tuesday, July 24, 12 8 Unified Parallel C -- Yili Zheng

#include	
 <upc.h>	
 	
 /*	
 needed	
 for	
 UPC	
 extensions	
 */	

#include	
 <stdio.h>	

	

int	
 main(…)	
 {	

	
 	
 printf("Thread	
 %d	
 of	
 %d:	
 hello	
 UPC	
 world\n",	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 MYTHREAD,	
 THREADS);	

	
 	
 return	
 0	

}	

> upcc helloworld.upc
> upcrun –n 4 ./a.out

Thread 1 of 4: hello UPC world
Thread 0 of 4: hello UPC world
Thread 3 of 4: hello UPC world
Thread 2 of 4: hello UPC world

How to use UPC on Cray XE / XK
• module swap PrgEnv-pgi PrgEnv-cray
•  cc -h upc helloworld.upc
•  aprun -n 8 ./a.out

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 9

UPC is simple
•  5 necessary keywords:

•  shared
•  upc_fence // non-collective
•  upc_barrier // imply a fence
•  THREADS
•  MYTHREAD

• Communication is implicit
•  shared int s;
•  s = 5; // write (put)
•  a = s; // read (get)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 10

Sharing Data
• Static shared data defined in file scope

•  shared int j; /* shared scalar variable resides on thread 0 */
•  shared int a[10]; /* shared array distributed in round-robin */

• Shared arrays are distributed in a 1-D block-cyclic fashion
over all threads
•  shared [blocking_factor] int array[size];
•  Example: shared [2] int b[12]; on 4 UPC threads

•  logical data layout

•  physical data layout

Tuesday, July 24, 12 11 Unified Parallel C -- Yili Zheng

4 5 6 7 0 1 8 9 2 3 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Data Layouts in a Nutshell
• Static non-array objects have affinity with thread 0
• Array layouts are controlled by the blocking factor:

• Empty or [1] (cyclic layout)
shared int == shared [1] int

•  [*] (blocked layout)
shared [*] int a[sz] == shared [sz/THREADS] int a[sz]

•  [0] or [] (indefinite layout, all on 1 thread)
 shared [] int == shared [0] int

•  [b] (fixed block size, aka block-cyclic)

• The affinity of an array element A[i] is determined by:
 (i / block_size) % THREADS

• M-D arrays linearize elements in row-major format

Tuesday, July 24, 12 12 Unified Parallel C -- Yili Zheng

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to shared space */

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
p1:

Thread0 Thread1 Threadn

p2:
p1:

p2:

p1:

p2:

p3:
p4:

p3:
p4:

p3:
p4:

Tuesday, July 24, 12 13 Unified Parallel C -- Yili Zheng

Multi-Dimensional Arrays

Shared-memory of Thread 1

Shared-memory of Thread 1

Shared-memory of Thread 2

Shared-memory of Thread 2

pointers A

Static 2-D array: shared [*] double A[M][N];

Dynamic 2-D array: shared [] double **A;

A[i]

A and pointers can be
private and replicated
on all threads.

A[i][j]

Tuesday, July 24, 12 14 Unified Parallel C -- Yili Zheng

•  upc_forall(init;	
 test;	
 loop;	
 affinity)	

	
 	
 	
 	
 	
 	
 statement;	

•  upc forall is a collective operation in which, for each execution of the loop
body, the controlling expression and affinity expression are single-valued.

•  Programmer asserts that the iterations are independent
•  Affinity expression indicates which iterations will run on each thread.

It may have one of two types:
•  Integer: (affinity%THREADS) == MYTHREAD
•  Pointer: upc_threadof(affinity) == MYTHREAD
 upc_forall(i=0;	
 i<N;	
 i++;	
 i)	
 	

	
 	
 	
 stmt;

 equivalent to

 for(i=0;	
 i<N;	
 i++)	
 	

	
 	
 	
 if	
 (MYTHREAD	
 ==	
 i	
 %	
 THREADS)	
 stmt;	

Loop level parallelism
Tuesday, July 24, 12 15 Unified Parallel C -- Yili Zheng

Synchronization - Locks
•  Locks in UPC are represented by an opaque type:

upc_lock_t

•  Locks must be allocated before use:
upc_lock_t *upc_all_lock_alloc(void);
 collective call - allocates 1 lock, same pointer to all threads
upc_lock_t *upc_global_lock_alloc(void);
 non-collective - allocates 1 lock per caller

•  To use a lock:
void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)
 use at start and end of critical region

•  Locks can be freed when not in use
void upc_lock_free(upc_lock_t *ptr);

Tuesday, July 24, 12 16 Unified Parallel C -- Yili Zheng

UPC Global Synchronization
•  UPC has two basic forms of barriers:

•  Barrier: block until all other threads arrive
 upc_barrier

•  Split-phase barriers
 upc_notify; this thread is ready for barrier
 do computation unrelated to barrier
 upc_wait; wait for others to be ready

•  Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {
 ...
 upc_barrier MERGE_BARRIER;
} else {
 ...
 upc_barrier MERGE_BARRIER;
}

Tuesday, July 24, 12 17 Unified Parallel C -- Yili Zheng

Bulk Data Movement and Nonblocking
Communication
•  Loops to perform element-wise data movement could

potentially be slow because of network traffic per element
•  Language introduces variants of memcpy to address this

issue:
upc_memcpy (shared void * restrict dst,
 shared const void * restrict src, size_t n)
upc_memput (shared void * restrict dst,
 const void * restrict src, size_t n)
upc_memget (void * restrict dst,
 shared const void * restrict src, size_t n)

Tuesday, July 24, 12 18 Unified Parallel C -- Yili Zheng

Data Movement Collectives
•  upc_all_broadcast(shared void* dst, shared void* src, size_t nbytes,

…)
•  upc_all_scatter(shared void* dst, shared void *src, size_t nbytes, …)
•  upc_all_gather(shared void* dst, shared void *src, size_t nbytes, …)
•  upc_all_gather_all(shared void* dst, shared void *src, size_t nbytes,

…)
•  upc_all_exchange(shared void* dst, shared void *src, size_t nbytes,

…)
•  upc_all_permute(shared void* dst, shared void *src, shared int* perm,

size_t nbytes, …)
•  Each threads copies a block of memory and sends it to thread in

perm[i]

Tuesday, July 24, 12 19 Unified Parallel C -- Yili Zheng

Computational Collectives
upc_all_reduceT(shared void* dst, shared void* src,
 upc_op_t op, …)
 data type T: char, short, int, float, double, long long

double,…
 upc_op_t: +, *, &, |, xor, &&, ||, min, max

upc_all_reduceT computes:

upc_all_prefix_reduceT(shared void* dst, shared void *src,
 upc_op_t op, …)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 20

0 1 2 3 4 5 6 7
7

0

[]
i
A i

=
∑

0 1

2 3

4 5

6 7

Not

Example: Jacobi (5-point stencil)

• Good spatial locality
• Mostly local memory accesses
• No explicit communication ghost-

zone management

shared [ngrid*ngrid/THREADS] double u[ngrid][ngrid];
shared [ngrid*ngrid/THREADS] double unew[ngrid][ngrid];
shared [ngrid*ngrid/THREADS] double f[ngrid][ngrid];

upc_forall(int i=1; i<n; i++; &unew[i][0]) {
 for(int j=1; j<n; j++) {
 utmp = 0.25 * (u[i+1][j] + u[i-1][j] + u[i][j+1] + u[i][j-1] -
 h*h*f[i][j]); /* 5-point stencil */
 unew[i][j] = omega * utmp + (1.0-omega)*u[i][j];
 }
 }

Tuesday, July 24, 12 21 Unified Parallel C -- Yili Zheng

T0 T0

T1 T1

T2 T2

T3 T3

T0 T0

T1 T1

T2 T2

T3 T3

Example: Random Access (GUPS)
shared uint64 Table[TableSize]; /* cyclic distribution */
uint64 i, ran;

/* owner computes, iteration matches data distribution */
upc_forall (i = 0; i < TableSize; i++; i) Table[i] = i;

upc_barrier; /* synchronization */

ran = starts(NUPDATE / THREADS * MYTHREAD); /* ran. seed */

for (i = MYTHREAD; i < NUPDATE; i+=THREADS) /* SPMD */
 {
 ran = (ran << 1) ^ (((int64_1) ran < 0) ? POLY : 0);
 Table[ran & (TableSize-1)] = Table[ran & (TableSize-1)] ^ ran;
 }
upc_barrier; /* synchronization */

Tuesday, July 24, 12 22 Unified Parallel C -- Yili Zheng

The MPI version is about 150
lines due to message
aggregation.

UPC Compiler Implementation

Source-to-source translator

• Pros: portable
• Cons: may lose program

information in two-phase
compilation

• Example: Berkeley UPC

Source-to-object-code compiler

• Pros: easier to implement
UPC specific optimization

• Cons: less portable
• Example: GCC UPC and

most vendor UPC

Tuesday, July 24, 12 23 Unified Parallel C -- Yili Zheng

UPC code

UPC source-to-source
translator

C code

UPC code

UPC source-to-object
code complier

Assembly code

Programming models on BlueGene/P

IBM DCMF Messaging Library

MPICH2 BGP Port

MPI Apps

GASNet DCMF Conduit

BUPC
Runtime

CAF
Runtime

UPC Apps

IBM PGAS Runtime

BlueGene/P Networks (Torus, Collective and Barrier)

Tuesday, July 24, 12 24 Unified Parallel C -- Yili Zheng

IBM XL UPC Compiler

BUPC
Compiler

CAF
Compiler

CAF
Apps

Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library

Network Drivers and OS Libraries

Translated C code with Runtime Calls

Tuesday, July 24, 12 25 Unified Parallel C -- Yili Zheng

Translation and Call Graph Example
shared [] int * shared sp;
*sp = a;

UPC-to-C Translator

UPCR_PUT_PSHARED_VAL(sp, a);

gasnet_put(sp, a); memcpy(sp, a);

UPC Runtime

GASNet Memory Access

Is *sp
local?

No Ye
s

Tuesday, July 24, 12 26 Unified Parallel C -- Yili Zheng

Casting Shared-Pointer to Local

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 27

shared	
 []	
 double	
 *sa,	
 *sb,	
 *sc;	

for	
 (i=0;	
 i<nelems;	
 i++)	
 {	

	
 	
 sa[i]	
 =	
 sb[i]	
 +	
 alpha	
 *	
 sc[i];	

}	

shared	
 []	
 double	
 *sa,	
 *sb,	
 *sc;	

double	
 *a,	
 *b,	
 *c;	

a=(double	
 *)sa;	
 b=(double	
 *)sb;	
 c=(double	
 *)sc;	

for	
 (i=0;	
 i<nelems;	
 i++)	
 {	

	
 	
 a[i]	
 =	
 b[i]	
 +	
 alpha	
 *	
 c[i];	

}	

Kernel code of the STREAM benchmark using shared-pointers

Kernel code of the STREAM benchmark using local pointers

Shared Data Access Performance: Local
Pointer vs. Pointer-to-shared

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 28

0	

100	

200	

300	

400	

500	

600	

700	

800	

8	
 16	
 32	
 64	
 128	
 256	
 512	

Ti
m
e	

(n
s)
	

Data	
 Size	
 (bytes)	

Shared	
 Data	
 Access	
 Time	
 on	
 8-­‐core	
 Intel	
 	

Local	
 pointer	

Pointer-­‐to-­‐shared	
 Berkeley	
 UPC	

Pointer-­‐to-­‐shared	
 GCCUPC	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

8	
 16	
 32	
 64	
 128	
 256	
 512	

Ti
m
e	

(n
s)
	

Data	
 Size	
 (bytes)	

Shared	
 Data	
 Access	
 Time	
 on	
 32-­‐core	
 AMD	

Local	
 pointer	

Pointer-­‐to-­‐shared	
 Berkeley	
 UPC	

Pointer-­‐to-­‐shared	
 GCCUPC	

Use Physical Shared-Memory for Inter-
Process Communication
• Cast a pointer-to-shared affined to another thread but can

be accessed directly by hardware load and store
•  void * upc_cast(shared void *ptr);
•  Castability query:

•  int upc_castable(shared void *ptr);
•  int upc_thread_castable(unsigned int threadnum);

•  Implemented by cross-mapping physical memory to virtual
address spaces of all processes sharing the node

• Save memory space and copy overheads that would be
otherwise introduced by bounce-buffers

Tuesday, July 24, 12 29 Unified Parallel C -- Yili Zheng

Memory Consistency Models
•  UPC supports two memory consistency models: strict and

relaxed
•  Strict consistency

•  Usage: #pragma upc strict or strict shared [] double *sa;
•  Provide a total ordering for all memory accesses
•  Easy to reasoning about but takes a huge performance penalty

•  Relaxed consistency
•  Usage: #pragma upc relaxed or relaxed shared [] double *sa;
•  Allow concurrent and out-of-order data accesses within a

synchronization phase
•  Deliver better performance but may introduce data races if

synchronization is done correctly
•  In practice

•  Use the relaxed consistency model (default) until encountering errors
•  Use the strict consistency model for testing and debugging

Tuesday, July 24, 12 30 Unified Parallel C -- Yili Zheng

Memory Consistency Performance:
Relaxed vs. Strict

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 31

0	

500	

1000	

1500	

2000	

8	
 16	
 32	
 64	
 128	
 256	

Ti
m
e	

(n
s)
	

Data	
 Size	
 (bytes)	

Shared	
 Data	
 Access	
 Time	
 on	
 32-­‐Core	
 AMD	

Relaxed	
 consistency	

Strict	
 consistency	

0	

500	

1000	

1500	

2000	

2500	

8	
 16	
 32	
 64	
 128	
 256	

Ti
m
e	

(n
s)
	

Data	
 Size	
 (bytes)	

Shared	
 Data	
 Access	
 Time	
 on	
 8-­‐Core	
 Intel	

Relaxed	
 consistency	

Strict	
 consistency	

Example: Matrix Transpose
• Global array view may

tempt you to use a naïve
implementation

• Correct but very poor
performance
•  All fine-grained accesses
•  No data locality
•  Difficult to vectorize

Tuesday, July 24, 12 32 Unified Parallel C -- Yili Zheng

shared	
 double	
 *sa,	
 *sb;	

size_t	
 N;	

	

upc_forall(i=0;	
 i<N;	
 i++;	
 i)	
 	

{	

	
 	
 	
 	
 for	
 (j=0;	
 j<N;	
 j++)	
 	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 ij	
 =	
 i*N+j;	

	
 	
 	
 	
 	
 	
 	
 	
 ji	
 =	
 j*N+i;	

	
 	
 	
 	
 	
 	
 	
 	
 sb[ij]	
 =	
 sa[ji];	

	
 	
 	
 	
 }	

	
 	
 }	

Example: Optimized Matrix Transpose

• Use a block data layout
•  Transpose data blocks by

a collective operation
•  Transpose the elements in

the block locally

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 33

B	
 =	
 N/THREADS;	

nbytes	
 =	
 sizeof(double)*B*B;	

upc_all_exchange(sb,	
 sa,	
 nbytes,	
 UPC_IN_MYSYNC|UPC_OUT_MYSYNC);	

	

/*	
 local	
 transpose	
 */	

for	
 (t=0;	
 t<THREADS;	
 t++)	
 {	

	
 	
 la	
 =	
 (double	
 *)&sa[MYTHREAD]	
 +	
 B*B*t;	

	
 	
 lb	
 =	
 (double	
 *)&sb[MYTHREAD]	
 +	
 B*B*t;	

	
 	
 local_transpose(la,	
 lb,	
 B);	

}	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

Matrix Transpose Performance

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

256	
 512	
 1024	
 2048	

Ti
m
e	

(u
s)
	

Data	
 Size	
 (bytes)	

Transpose	
 on	
 32-­‐Core	
 AMD	

CollecFve	

Naive	

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 34

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

256	
 512	
 1024	
 2048	

Ti
m
e	

(u
s)
	

Data	
 Size	
 (bytes)	

Transpose	
 on	
 8-­‐Core	
 Intel	

CollecFve	

Naive	

Example : Matrix Multiplication

• Naïve implementation is very slow
•  Many fine-grained remote accesses
•  Recurring overheads in access through pointers-to-shared
•  Do not have optimization for the sequential part, such as register

blocking , cache blocking and vectorization

• But it is really simply to write if you don’t care about
performance (such as in prototyping or non-critical path)

Tuesday, July 24, 12 35 Unified Parallel C -- Yili Zheng

shared	
 double	
 A[M][P],	
 B[P][N],	
 C[M][N];	

	

for	
 (int	
 i=0;	
 i<M;	
 i++;)	

	
 	
 upc_forall	
 (int	
 j=0;	
 j<N;	
 j++;	
 &C[i][j])	

	
 	
 	
 	
 for	
 (int	
 k=0;	
 k<P;	
 k++)	

	
 	
 	
 	
 	
 	
 C[i][j]	
 +=	
 A[i][k]*B[k][j];	

Optimized UPC Parallel DGEMM

•  2-D block-cyclic data layout
•  Use parallel algorithms such as SUMMA
•  Transfer data in large blocks
•  Use optimized BLAS dgemm (e.g., Intel MKL)
•  Use non-blocking collective communication if available (e.g.,

row and column broadcasts)

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

= X

Tuesday, July 24, 12 36 Unified Parallel C -- Yili Zheng

Matrix Multiplication Performance

32-Core AMD (Opteron 8387) 8-Core Intel (Xeon E5530)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 37

0	

50	

100	

150	

200	

250	

1	
 2	
 4	
 8	
 16	
 32	

G
Fl
op

s	

Number	
 of	
 Cores	

UPC	
 with	
 ACML	

ACML	
 with	
 OpenMP	

0	

10	

20	

30	

40	

50	

60	

70	

80	

1	
 2	
 4	
 8	

G
FL
op

s	

Number	
 of	
 Cores	

UPC	
 with	
 Intel	
 MKL	

Intel	
 MKL	
 with	
 OpenMP	

Example: 3-D FFT
•  2-D Data Partitioning
• Row-column algorithm with

overlapping local FFT and
transpose (all-to-all
communication)

• UPC non-blocking operations
enabled fine-grained
overlapping for better
performance

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 38

FFT Performance on Multi-Core

Threads 4 8 16 32
FFTW 4561.3 7338.7 8756.4 8365.5
UPC with
FFTW

2306.61 4242.28 7210.87 9849.7

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 39

Performance of 3D-FFT (512x256x256) on 32-core AMD (Mflops)

10	

100	

1000	

10000	

256	
 512	
 1024	
 2048	
 4096	
 8192	
 16384	
 32768	

G
Fl
op

s	

Cores	

3-­‐D	
 FFT	
 Weak	
 Scaling	
 Performance	
 on	
 IBM	
 BlueGene/P	

Ideal	
 Peak	

UPC	
 CollecFves	
 (Slabs)	

UPC	
 CollecFves	
 (Packed	
 Slabs)	

MPI	
 Collecitves	
 (Packed	
 Slabs)	

FFT	
 Performance	
 on	
 BlueGene/P	

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 40

G
oo

d

Pitfalls in Programming with UPC
• Abuse fine-grained inter-node data accesses – generate

tons of tiny data packets
•  Flood data from many to one – congest the network
• Share everything and access data uniformly – forget

about data localities and NUMA issues
• Use excessive locking/unlocking – lock operations are

expensive, especially on distributed-memory systems
• Hand code common math functions (instead of using

optimized libraries such as BLAS, FFTW, INTEL MKL,
IBM ESSL,…)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 41

Performance Penalty!

UPC Programming Tips
• Use local pointer to access the local part of
shared data by casting pointer-to-shared to local
pointer

• Leverage data affinity information and manage
shared data layout to minimize remote accesses
(both inter-node and NUMA)

• Use non-blocking communication if available
• Use collectives
• Use remote atomic operations if available

Tuesday, July 24, 12 42 Unified Parallel C -- Yili Zheng

UPC one for two?
•  Hybrid Programming Styles with UPC

•  fine-grained (shared memory style)
•  bulk synchronous (message passing style)

•  Hybrid Execution with UPC
•  Map UPC threads hierarchically to groups of Pthreads

•  Threads within a process share resources and the same virtual
address space

•  Processes within a node use physically shared memory for fast
communication

•  Inter-node communication uses the network
•  Balance resource sharing and isolation

•  Too much sharing: resource contention (lower performance), prone
to race conditions

•  No sharing: resource idling (lower throughput)

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 43

Interoperability: Mix it up

• UPC with other sequential languages: C++, FORTRAN
• MPI with UPC

•  Each MPI process is also a UPC thread
•  Each MPI process spawns a few UPC threads. MPI for inter-

process communication and UPC for intra-process communication

• UPC with OpenMP
•  Map each UPC thread to an OS process and spawn OpenMP

threads

• UPC with CUDA and OpenCL
•  Similar to MPI + CUDA/OpenCL

Tuesday, July 24, 12 44 Unified Parallel C -- Yili Zheng

UPC 1.3
• Coming this Fall
• Main features

•  Non-blocking memory copy operations
•  Implicit non-blocking memory operations – fire and forget
•  upc_memcpy_nbi(…);
•  upc_fence;

•  UPC atomics
•  CAS
•  Op
•  Fetch and Op

•  High precision timers
•  Collective memory deallocation (upc_all_free)

• Many bug fixes and clarifications
•  http://code.google.com/p/upc-specification/

Tuesday, July 24, 12 Unified Parallel C -- Yili Zheng 45

Tools
• Eclipse Parallel Tools Platform (PTP)

•  http://www.eclipse.org/ptp/

• Parallel Performance Wizard (PPW)
•  http://ppw.hcs.ufl.edu/

• GDB UPC
•  http://www.gccupc.org/gdb-upc-info/debugging-with-gdb-upc

•  Totalview
• Distributed Debugging Tool (DDT) from Allinea Software
• All other parallel computing tools for multi-process and

multi-thread programs
•  Executing a UPC program is just like running a normal multi-

process/multi-thread program from the OS’s perspective.

Tuesday, July 24, 12 46 Unified Parallel C -- Yili Zheng

Resources and Contacts
• Web sites::

•  UPC community portal: http://upc.gwu.edu
•  IBM XL UPC: http://www.alphaworks.ibm.com/tech/upccompiler
•  GCC UPC: http://www.gccupc.org
•  Berkeley UPC: http://upc.lbl.gov

• Email lists:
•  UPC Mailing Lists: http://upc.gwu.edu/upc_mail_group.html
•  public Berkeley UPC users list: upc-users@lbl.gov
•  Berkeley UPC/GASNet developers: upc-devel@lbl.gov

Tuesday, July 24, 12 47 Unified Parallel C -- Yili Zheng

THANK YOU!

