
27.06.2012 | 

Task Analysis with Score-P 

Daniel Lorenz 
Jülich Supercomputing Centre 
 
CScADS  Tools Workshop 
Snowbird, Utah 



Overview 

 Introduction to Score-P  

 Task related performance issues 

 Reconciling tasking with existing techniques 

 Example analysis 

 Future work 

 

 



Score-P 



Introduction to Score-P 

Common tools infrastructure: 

■ Starting with Scalasca, Periscope, TAU, and Vampir 

■ Open for other tools and groups 

SILC and LMAC projects funded by BMBF, Germany 

■ Scalable Infrastructure for Automatic Performance 

Analysis of Parallel Codes (SILC) 

■ Performance dynamics of massively parallel codes 

(LMAC) 

PRIMA project funded by DOE, US 

■ Performance Refactoring of Instrumentation, 

Measurement, and Analysis Technolgies for Petascale 

Computing 

 

 



Score-P functionality 

Fundamental tool concepts: 

■ Instrumentation (various methods), later sampling 

■ Event trace recording 

■ Profile generation 

■ Online access to profiling data and execution control 

Parallelization methods: 

■ MPI 

■ OpenMP 3.0 

■ Hybrid parallelism (and serial) 

More functionality in the future (Cuda, OmpSs, HMPP, Pthreads, …) 

Analysis tools kept separate on top of Score-P components 

 



Score-P architecture 

 
 
 
 
 

Target application (MPI, OpenMP, hybrid, serial) 

 
 

Instrumentation 
 

 
 
 
 

Score-P measurement infrastructure 

Online interface 
Event traces 

(OTF2 format) 

Vampir Scalasca Periscope TAU 

Call-path profiles  
(CUBE4 and TAU formats) 

Compiler 
TAU 

instrumentor 
OPARI 2 User 

more … Hardware counter Memory management 

Binary 
instrumentor 

MPI 
wrapper 



Score-P availability 

 

 

Current release is version 1.0.2 

■ New BSD license 

■ The task profiling features of this presentation will be in the Score-P 1.1 

release 

 

Download: http://www.score-p.org 

 

 

 

http://www.score-p.org/
http://www.score-p.org/
http://www.score-p.org/


Goals of the tasking support 

Analysis of task related performance issues 

■ Task granularity 

■ Task dependency analysis (under development in Scalasca) 

Reconcile existing techniques with tasking 

■ No continuous instruction stream per thread anymore 

■ Additional level of parallelism and code structure need to be represented 

Generic event model, used for multiple tasking systems  

■ Currently, implementation for OpenMP tied tasks 

■ OmpSs and HMPP support under development 



Task related performance issues 



Task granularity 

Tasking offers automated load balancing  

■ But introduces task management overhead 

Tasks may be too small 

■ The management overhead may cause performance loss 

■ Task creation may become a bottleneck 

■ Only a fraction of tasks may be too small  

Especially when using recursive task creation structures 

■ Identify problematic tasks 

For recursive tasks: Where is the best cut-off? 

Tasks may be too large and too few 

■ Reduction of the load balancing effects 

■ Similar effects may happen with few, long dependency chains 



What data shall we measure? 

We want to measure  

■ runtime of tasks 

■ task creation time and management overhead 

■ Number of tasks 

Only a fraction of tasks may have performance issues 

■ In the total sum, the effects might be leveled by other tasks 

■ Additional statistical information (min,max,median,mean) might help 

recognizing an issue  

 



How to identify problematic tasks 

 

Provide possibilities to group 

tasks 

■ by constructs 

■ depending on certain 

parameters (e.g. recursion 

depth) 

 

mean execution time in µs 



Reconcile tasking with existing techniques 



Reconcile tasking with existing techniques 

No continuous instruction stream per thread anymore 

■ Distinguish the event stream of each task 

■ Need to identify task instances 

■ Track task switches 

■ For OpenMP tied tasks, we can insert necessary instrumentation 



Task data representation  

 

Additional level of parallelism and code structure  

 

For Scalasca/Score-P we want to integrate tasks into Cube call trees 

 

Where shall we place tasks in the call tree? 

 



Display tasks in a Cube4 profile (1) 

 Require that the inclusive time is the subtree’s sum of exclusive times 

 Tasks must appear at execution point in the tree of the implicit task 

■ Correct metric attribution 

■ Other position may lead to 

■ Negative times for exclusive execution time (and other metrics) 

■ Appearance of false idle times at synchronization points 

 

 

 

1 

1 

1 

6 

!$ omp parallel region 

create task 1 

barrier 

task 1 

1 

-5 

7 

6 

!$ omp parallel region 

create task 1 

barrier 

task 1 

At execution point At creation point 



Display tasks in a Cube4 profile (2) 

 All tasks appear as children of the implicit task 

 If tasks appear as children in other explicit tasks: 

■ Random execution order leads to incomparable call-tree structure 

■ Call-tree may become extremely deep 

■ You might end up with separate node for every task instance 

■ Could lead to inconsistent call tree 

 

 
barrier 

task 1 

taskwait 

task 2 

taskyield 

Enter barrier 
Start task 1 => enter task 1 
Enter taskwait 
Start task 2 => enter task2 
Enter taskyield 
Resume Task 1 => exit taskwait 



Display tasks in a Cube4 profile (3) 

 A task may be suspended and resumed at another scheduling point 

■ How do we count undividable metrics, e.g. visits? 

Similar problem for min, max, sum of squares 

■ First event of the resumed task is an exit event 

■ We would need to copy the whole call stack of the task 

 

 Solution 

■ Leave stub node for task execution at execution point 

■ Put task’s inner structure in a separate tree beside the implicit task 

 

 



Call-tree example (main) 



Call-tree example (tasks) 



Analysis example 



nqueens 

 Code of the Barcelona OpenMP Tasking Suite (BOTS) 

 Calculate the possibilities to place n queens on an nxn chess board 

 BOTS provide multiple versions of the code 

■ Analyze the version without cut-off 

■ There is also an optimized version with a cut-off 

Runs performed on Juropa using a GNU compiler 

 



Speedup of nqueens without cut-off (s) 

Number of threads 

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

1 2 4 8 

no cut-off 



Profile comparison (execution time) 

Profile of a run with one 

thread 

Profile of a run with four 

threads 

Sum of execution time of user code over all threads stays nearly the same 



Profile comparison (execution time) 

Profile of a run with one 

thread 

Profile of a run with four 

threads 

Additional time due to management overhead 



Tasks by recursion level 

Depth level Mean time Sum Number of tasks 

0 23.6 µs 0.0003 s 14 

1 17.4 µs 0.0034 s 196 

2 13.4 µs 0.0293 s ~ 2,000 

3 10.6 µs 0.2019 s ~19,000 

4 8.05 µs 1.086 s ~135,000 

5 5.97 µs 4.520 s ~750,000 

6 4.23 µs 14.31 s  ~3,400,000 

7 2.93 µs 34.25 s ~11,700,000 

8 1.98 µs 61.56 s ~31,000,000 

9 1.35 µs 83.01 s ~61,000,000 

10 0.94 µs 83.48 s ~89,000,000 

11 0.69 µs 62.42 s ~91,000,000 

12 0.51 µs 32.26 s ~63,000,000 

13 0.26 µs 7.145 s ~27,000,000 



Depth level Mean time Sum Number of tasks 

0 23.6 µs 0.0003 s 14 

1 17.4 µs 0.0034 s 196 

2 13.4 µs 0.0293 s ~ 2,000 

3 10.6 µs 0.2019 s ~19,000 

4 8.05 µs 1.086 s ~135,000 

5 5.97 µs 4.520 s ~750,000 

6 4.23 µs 14.31 s  ~3,400,000 

7 2.93 µs 34.25 s ~11,700,000 

8 1.98 µs 61.56 s ~31,000,000 

9 1.35 µs 83.01 s ~61,000,000 

10 0.94 µs 83.48 s ~89,000,000 

11 0.69 µs 62.42 s ~91,000,000 

12 0.51 µs 32.26 s ~63,000,000 

13 0.26 µs 7.145 s ~27,000,000 

Tasks by recursion level Mean task creation time approx. 0.85 µs 

>100 % Overhead 

>20 % Overhead 

>10 % Overhead 

>5 % Overhead 



Depth level Mean time Sum Number of tasks 

0 23.6 µs 0.0003 s 14 

1 17.4 µs 0.0034 s 196 

2 13.4 µs 0.0293 s ~ 2,000 

3 10.6 µs 0.2019 s ~19,000 

4 8.05 µs 1.086 s ~135,000 

5 5.97 µs 4.520 s ~750,000 

6 4.23 µs 14.31 s  ~3,400,000 

Tasks by recursion level 

>10 % Overhead 

>5 % Overhead 

 Let us target less than 5% management overhead per task 

 210 tasks may be too little for proper load balancing 

 Upper levels do not contribute significant amount of execution time 

 Tasks in last level will grow due to merge with children 

 Compromise: Cut-off at level 3 

 

Mean task creation time approx. 0.85 µs 



Resulting speedup  

Number of threads 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 2 4 8 

no cut-off 

with cut-off 



Future Work 

 Currently, only OpenMP tied tasks are supported 

■ Ongoing work on HMPP and OmpSs support 

■  Hopefully, a new OpenMP tools interface provides necessary 

information to support untied tasks, too 

 

 Trace analysis of tasks with Scalasca 

■ Extend for additional patterns 

■ Task dependency analysis 

 


