
www.bsc.es

CScADS – Snowbird, June 2012

Judit Gimenez (judit@bsc.es)

BSC Tools update
Using clustering and Folding

Outline

Computation Structure detection
– Short intro
– Aggregative Refinement
– Tracking program evolution
– Scaling clustering algorithm

Instantaneous performance metric
– Clustering + Folding

Clustering

Identification of computation structure
– CPU burst = region between consecutive runtime calls

• Described with performance hardware counters
• Associated with call stack data

Using DBSCAN density-cluster algorithm
– Data not necessarily Gaussian

Outputs

Scatter Plot of Clustering Metrics Clusters Distribution Along Time

Cluster Statistics Code Linking

Using clusters to understand apps behavior (GROMACS)

Instructions imbalance

IPC Imbalance

Using clusters to understand apps behavior (GROMACS)

64 procs

256 procs

Identifying main code regions (PARSEK)

duration vs. cluster

instr. vs. cluster

Outline

Computation Structure detection
– Short intro
– Aggregative Refinement
– Tracking program evolution
– Scaling clustering algorithm

Instantaneous performance metric
– Clustering + Folding

DBSCAN characteristics

Two parameters
– Epsilon: search radius
– MinPoints: minimum cluster density

Noise point

Cluster points

DBSCAN Eps selection

Which results are better?

Eps=0.0400 (High Value)Eps=0.0140 (Low Value)

DBSCAN single Eps limitation

Desired resultsDBSCAN Eps=0.05

B
C

D
E

F
G H

A

A B C D E F GH

Refinement Algorithm Approach

Analogy between DBSCAN and hierarchical clustering
– Iterative bottom up construction of a pseudo-dendogram

Cluster Sequence Score as target
– Similar to X-means approach to decide K-means k parameter

B
C

D
E

F
G H

A

A B C D E F GH

B
C

D
E

F
G H

A

A B C D E F GH

Automatic Refinement of Parallel Application Structure Detection (ICPADS 2011)

BT A 4 tasks

VAC4 128 tasks

VAC4 128 tasks

VAC4 128 tasks

Outline

Computation Structure detection
– Short intro
– Aggregative Refinement
– Tracking program evolution
– Scaling clustering algorithm

Instantaneous performance metric
– Clustering + Folding

Use and correlate information from different runs
– Analysis of input parameters
– Code improvements
– Using different machines, compilers, flags, libraries
– Scalability studies
– Even for the same run: time evolution

Scatter plot = performance picture
– Identifies objects and their weight
– Correlation image tracking

Based on heuristics
– Code regions evolve smoothly (things keep closer)
– No common callstack means not the same region
– Time sequence identify regions within and between runs

Correlating multiple runs

On the usefulness of object tracking techniques in performance analysis (UPC-DAC-RR-2012-18)

Scenario 1: Analysing scalability (WRF)

128 vs. 256

Scenario 2: Comparing machines & compilers (CG-POP)

PowerPC, gfortran PowerPC, xlc

Intel, gfortran Intel, ifort

Scenario 3: Problem size impact (NAS-BT)

Class W

Class C

Class A

Class B

Outline

Computation Structure detection
– Short intro
– Aggregative Refinement
– Tracking program evolution
– Scaling clustering algorithm

Instantaneous performance metric
– Clustering + Folding

First target: online clustering
– Centralised approach (global clustering at the MRNet frontend)
– Data reduction trough sampling
– Data classification based on the samples clustering

Sampling input data

All processes

32 representatives (50%)

25% random records

15% random records

8 representatives + 15% random

75% less data
6s down from 2m

1. Local clustering
– Up to 20-30k points per local process

2. Generate models
– Convex hull, medial axis…

3. Merge the hulls over the MRNet
– Intersect?

4. Broadcast the global model
5. Classify data locally using the global model

– Point inside the hull?

PEPC 4K tasks, 3095134 points, 273 tasks (16 way tree, 256 leaves, 12k points
per local clustering) clustering time 28.6 sec

Hierarchical DBSCANHierarchical DBSCAN

Distributed tree-based implementation of DBSCAN cluster algorithm for parallel applications
analysis (UPC-DAC-RR-2011-38)

0
50

100
150
200
250

300
350
400
450
500

Sequential Sampling 25% Parallel 2+1 tasks Parallel 4 +1tasks

PARSEK Total time

PARSEK Clustering time

Comparison (parsek)Comparison (parsek)

Sampling 25%

31515 points

Comparison (WRF)Comparison (WRF)

Sampling 25%Parallel (2+1)Sequential /Par (4+1)

0

200

400

600

800

1000

1200

Sequential Sampling 25% Parallel 2+1 tasks Parallel 4 +1tasks

WRF Total time

WRF Clustering time

74240 points

Outline

Computation Structure detection
– Short intro
– Aggregative Refinement
– Tracking program evolution
– Scaling clustering algorithm

Instantaneous performance metric
– Clustering + Folding

Application granularity vs.
detailed granularity
– Samples: hardware counters +

callstack
Folding: based on known
structure: iterations, routines,
clusters;
– Project all samples into one

instance
Extremely detailed time
evolution of hardware counts,
rates and callstack with
minimal overhead
– Correlate many counters
– Instantaneous CPI stack models

Can I get very detailed perf. data with low overhead?

Unveiling Internal Evolution of Parallel Application Computation Phases (ICPP 2011)

Correlating with sources: which line should I look?

Folded source code line

Folded instructions

The “benefits” of Fortran 90 intrinsic (PEPC)

96 MIPS

Performance metrics

16 MIPS

2.3 M L2 misses/s

0.1 M TLB misses/s

htable%node = 0
htable%key = 0
htable%link = -1
htable%leaves = 0
htable%childcode = 0

do i = 1, n
htable(i)%node = 0
htable(i)%key = 0
htable(i)%link = -1
htable(i)%leaves = 0
htable(i)%childcode = 0

End do

Changes

-70% time

-18% instructions

-63% L2 misses

-78% TLB misses

253 MIPS (+163%)

Interchanging loops (MR. GENESIS)

Framework for a Productive
Performance Optimization

(UPC-DAC-RR-2012-2)

Pre-computing float data – loop split (PMEMD)

Conclusions

Performance analytics
– Data analytics applied to raw performance data
– From data to insight

• Information is on variability and distribution
– Huge room for research

Showed results of some techniques
– Clustering enables focusing the analysis and open many different

uses on the analysis
– Folding makes possible to compute instantaneous performance

metric functions with low overhead
– Tracking helps detecting movement in the performance space

• Sequence of “frames” along many factors (not just time)

www.bsc.es/paraver

