N,
h l | |\ | |\ /I SCHOOL of ENGINEERING <
Department of Computer Science Sca | ad b I e SySte Mms EM

A (Brief) LIBI Update and
Other MRNet-related Stuff

Joshua Goehner, Taylor Groves Dong Ahn and Greg Lee
and Dorian Arnold LLNL

UNM

LIBI Approach

» LIBI: Lightweight infrastructure- Large Scale Distributed Software
bootstrapping infrastructure Debuggers System Monitors
Applications
Performance Analyzers Overlay Networks

o Generic service for scalable
distributed software infrastructure
bootstrapping

LaunchMON
* Process launch i

LIBI

Job Launchers Communication
SLURM Services
« Scalable, low-level collectives OpenRTE COBO
rsh/ssh
ALPS MPI

Members

LIBI Architecture
Front End

LIBI Abstractions

» host-distribution: where to create processes

o <hostname, num-processes>

» process distribution: how/where to create processes

o <session-id, executable, arguments, host-distribution,
environment>

LIBI API

launch (process-distribution-array)

o jnstantiate processes according to input distributions

[send|recv]UsrData (session-1id, msqg)

o communicate between front-end and session master

broadcast (), scatter (), gather (), barrier ()

o communicate amongst session members

Example LIBI Front-end

front-end() {
LIBI fe init();

LIBI fe createSession(sess);

proc dist req t pd;
pd.sessionHandle = sess;
pd.proc_path = get ExePath();
pd.proc_argv = get ProgArgs();
pd.hd = get HostDistribution();

LIBI fe launch(pd);

//test broadcast and barrier
LIBI fe sendUsrData(sessl, msg, len);

LIBI fe recvUsrData(sessl, msg, len);

//test scatter and gather
LIBI fe sendUsrData(sessl, msg, len);
LIBI fe recvUsrData(sessl, msg, len);

Example LIBl-launched Application

session member () {
LIBI init();

//test broadcast and barrier

LIBI recvUsrData(msg, msg length);
LIBI broadcast(msg, msg length);
LIBI barrier();

LIBI sendUsrData(msg, msg length)

//test scatter and gather

LIBI recvUsrData(msg, msg length);

LIBI scatter(msg, sizeof (rcvmsg), rcvmsg);
LIBI gather(sndmsg, sizeof (sndmsg), msg);
LIBI sendUsrData(msg, msg length);

LIBI finalize();

LIBI Implementation Status

» LaunchMON-based runtime Large Scale Distributed Software
Debuggers System Monitors
. Applications
o SLURM or rsh launching PP
Performance Analyzers Overlay Networks
LIBI

o COBO PMGR service

» Rsh-based default

Job Launchers Communication

o Pluggable launch topologies Services
OpenRTE
o Devised a provably optimal algorithm! ALPS MPI

Optimal Launching Topology

» Assumptions
o Homogenous computing environment
 All nodes have the same computational power
« Constant wait time between each local launch command
« Constant remote launch time

* physical network topology?
- file system (and other resource) contention?

» Algorithm Overview
o Pick first node as root
o For every subsequent node, place at minimal launch point

MRNet/LIBI Integration

» MRNet uses LIBI to launch all MRNet processes

o Parse topology file and setup/call LIBT launch ()

» Session front-end gathers/scatters startup information

o Parent listening socket (IP/port)

LIBI v.s. MRNet default

140

MRNet Bootstrap Time (seconds)
. ~ o 00 5 o
o o o o o o

o

—

——Current MRNet

-®-MRNet over LIBI

o

10 15 20 25 30
MRNet Fanout

35

LIBI Updates

» Back-porting MRNet Integration
o As fastpath to MRNet on BG/Q
o QOriginal integration had some regression

* Replaced “XT” and “rsh” network modes with “libi” network

* No XT support
* No lightweight back-end support
o Reintegrate as additional instead of replacement mode

- until full support for XT and other features via libi mode

LIBI Things to Talk About at CSCaDS

» Can LIBI help with OSS startup issues?

» What'’s path forward for LIBI-based LaunchMON
refactoring?

» (How) should LIBI interface w/ CDTI?

» Should LIBI be a CBTF component?

Other MRNet-related Happenings

» Desire an autonomous MRNet

o Auto (re-)configuration for failure and performance
Need to understand how topology impacts performance
* Performance models and validations
Online monitoring of relevant, dynamic parameters
Efficient heuristics for determining better configurations
Cost-benefit analyses to decide whether to change or not

o}

(¢]

o

o

Performance Model Assumptions

» Focus on reduction operations

» Single FE, IN or BE per physical node

» Filter latency is independent of in-degree
» Assume steady state workload

» Focus on both streaming and one-shot operations
o Maximize throughput (for streaming operations)
o Minimize latency (for one-shot interactive operations)

LogP-inspired Model Parameters

v

Latency: |
Gap: g (packet size/bandwidth)

v

Fan-out: f
Message processing overhead: off)

v Vv

» Filter latency: c

v

Build a per-node model:
o Recursion for depth

Single Wave Model

Ti=l+g+o0(f)+c+max(Tc)

» Tiis the time to process the wave up to node i

» Tc is the time to process the wave for a node ¢, where c
is a child of i.

Streaming Model

Ti=1+ g +max(ci+ 0i(x))

» Pipelining effectively removes recursion from single
wave model

L Scalable Systems Lal:Z”

Parameter Value Generation

» Ping tests for platform dependent parameters
» Flat Topologies
o To observe per-child costs

» Chain Topologies
o To observe per-level costs

» Filer durationsetto O

Flat Topology (Fan-out) Tests

» Initial Measurement Observations:
o quadratic (not linear) performance with fan-out

» Find the coefficients that correspond to o(f): the
message processing overhead as a function of fanout

» As fan-out increases, cost increases can be attributed
to an overhead based on the breadth of the topology
o assuming children are synchronized

Fan-out Tests

e e _/tbon_model/model_foundation/fanout_march_27_minus_061}03Regudssion

0.08 T T T T T

0.07

0.06

o
o
a

time to proc. wave (s)
o
o
B

0.03

0.02

0401 L I 1 1 |
0 50 100 150 200 250 300

fanout

Chain Topology Tests

» As depth increases with other parameters accounted
for, cost increases can be properly attributed to an

overhead based on the height of the topology
o assuming latency and bandwidth are constant at each level

Combining the results

» Combined flat and chain topology
o Allows us to fill in message processing overhead coefficients

» Generated values for all the parameters

» Test these values with our model on some more
complex topologies

Initial Results

» Generated several topologies with 128 BEs
o Varying the internal structure

» OMNet++ simulation
o Each simulated overlay node operates according to model

» MRNetBench

o Allows full control over all parameters that influence
performance

Initial Results

Comparison of real and simulated TBON performance

N real
Il simulation

0.035

0.030

0.025

0.020

0.015

0.010

time to process a single wave (s)

0.005

0.000

llandl2 8x16 277 128flat 64x2

N

~

Scalable Systems (357

N

Future Directions

» Larger scales
» Real tool/application (STAT)

» After model is validated, move on to next phases of
autonomous operation

Autonomy Things to Talk about at CScADS

» Components of your computational model not
captured or captured inaccurately?

» Overall relevance to your tool/analysis framework?

» Martin, why aren’t we working together on this? ©

