Tree-Based Density Clustering using Graphics Processors

Ben Welton and Evan Samanas
Paradyn Project

CScADS 2012
Snowbird, Utah
June 26-29, 2012
TBON is a distributed computing model designed to be scalable, efficient, and flexible.

Flexible aggregation provided by user defined functions in filters

Ideal Characteristics:
- Filter output size constant or decreasing
- Computation rate similar across levels

Data Size:
- 10MB per BE

Packet Size:
- ≤10 MB

Total Time:
- ~30 sec

Packet Size:
- ≤10 MB

Data to process:
- e.g. 40 MB
Why GPUs In A TBON?

- Increase compute power
- Trade computation for bandwidth
 - Derived summaries
 - Compute and send \(\Delta \) data
 - Compressions (bzip, lzo, gzip, …)
- Filter function is a natural encapsulation for CUDA
The Tweet Stream

Source: Twitter, Map: About.com
Goal: Find regions that meet minimum density and spatial distance characteristics.

The two parameters that determine if a point is in a cluster is \(\text{Epsilon (Eps)} \) and \(\text{MinPts} \).

If the number of points in \(\text{Eps} \) is greater than \(\text{MinPts} \), the point is a core point. For every discovered point, this same calculation is performed until the cluster is fully expanded.

Clustering Example (DBSCAN\(^{[1]}\))

\([1]\) M. Ester et. al., A density-based algorithm for discovering clusters in large spatial databases with noise, (1996)
Previous Work In Scaling DBSCAN

- **PDBSCAN**[^2]
 - Quality equivalent to single DBSCAN
 - Linear speedup up to 8 nodes

- **DBDC**[^3]
 - Sacrifices quality
 - ~30x speedup on 15 nodes

- **CUDA-Dclust**[^4]
 - Quality equivalent to DBSCAN
 - ~15x faster on 1 node

[^2]: X. Xu et al., A fast Parallel Clustering Algorithm for Large Spatial Databases (1999)
[^3]: E. Januzaj et. al., DBDC: Density Based Distributed Clustering (2004)
[^4]: C. Bohm et al., Density-based clustering using graphics processors (2009)
Tree-Based Clustering: Mr. Scan

Algorithm Steps

SpatialDecomp: CPU (@ FE)

DBSCAN: CPU or GPU (@ BE)

DrawBoundBox: CPU or GPU

MergeCluster: CPU (x levels)
Spatial Decomposition

1. Start with an input of Spatially Referenced points
2. Partition the region into equal sized density regions across one dimension
3. Add the shadow region area of one Epsilon to all density regions
Multiple clusters are expanded simultaneously

CUDA-DCLUST [09 – Böhm]
DrawBoundBox – CPU or GPU

Tree-Based Density Clustering using Graphics Processors
Merge Step

- Checks for merge if box within shadow
- At least one core point MUST be in common
- Iterate through ALL points in right cluster

Tree-Based Density Clustering using Graphics Processors
Preliminary Evaluation

- **Dataset:** 1-3 “Tweet Days”
- **Measuring:**
 - Time to completion
- **Algorithms:**
 - Single-Threaded DBSCAN
 - MRNet w/DBSCAN filter
 - MRNet w/DBSCAN GPU filter
Single Node Performance

- CPU DBSCAN
- GPU DBSCAN

Time (H:M:S)

- 1-day (662,699 Points)
- 3-day (1,953,258 Points)
Single Day DBSCAN Run (662,966 Points)

Run Time (Seconds)

<table>
<thead>
<tr>
<th>MRNet Topology</th>
<th>CPU - MRNet</th>
<th>GPU - MRNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x16</td>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>1x2x4</td>
<td>1000</td>
<td>200</td>
</tr>
<tr>
<td>1x2x16</td>
<td>500</td>
<td>400</td>
</tr>
</tbody>
</table>
Tree-Based Density Clustering using Graphics Processors

Three Day DBSCAN Run (1,953,258 Points)

Run Time (Seconds)

MRNet Topology

1x16
1x2x4
1x2x16

CPU - MRNet
GPU - MRNet
Tree-Based Density Clustering using Graphics Processors

Speedup of 3 tweet days (1,953,258 Points)

- Speedup (X of Single CPU Node)
- # of Backend Nodes
- GPU - MRNet; 1xN Topology
- GPU - MRNet; 1x2xN Topology
Discussion

Preliminary evaluation raises some important questions

- What is causing DBSCAN to scale poorly?
- Why is GPU scaling somewhat erratic?
- How can we get to really large node counts?
Causes Of Poor Scaling

- **Merging Algorithm**
 - Slow algorithm for detecting collisions between clusters. Worst case – $O(N^2)$
 - Internal node load imbalance due to partitioning.
Causes Of Poor Scaling

- Decomposition
 - Requiring a full survey of the data on a single node prior to performing the decomposition limits the maximum input data set size.
 - Single dimensional decomposition limits the ability to evenly distribute workload.

Eps

7pts 11pts
Current Work

- **Addressing Scaling Issues**
 - Spatial Decomposition
 - Merging Algorithm
Spatial Decomposition

- **1D spatial decomposition** has some severe limitations
 - Partitions can have wildly differing point counts
 - Number of partitions are limited by Epsilon

- **2D spatial decomposition** allows for a finer grain breakdown of the regions.
Merging Algorithm

- **Two major scalability challenges**
 - Reducing the total number of required merges as data moves up the tree
 - Computational complexity of the merges
Merging Algorithm

Spatial Grid

4 Data Regions
0 Merge Operations

CP

Region with cluster

16 Data Regions
4 Merge Operations

Tree-Based Density Clustering using Graphics Processors
Merging Algorithm

Merge detection is currently too slow.

Can we improve our average case running time to avoid $O(N^2)$?

1. No points in common (no merge) – $O(1)$

2. Core points overlap – $O(1)$

3. Core/Non-Core point overlap – $O(N^2)$
Wrap Up

- Promising GPU results
- Lots of work left at the tree level
- We have delusions of grandeur
Questions?