
Paradyn Project

CScADS 2012

Snowbird, Utah

June 26-29, 2012

Tree-Based Density Clustering using

Graphics Processors

Ben Welton and Evan Samanas

The First Marriage of MRNet and GPUs

TBON Computation

2 Tree-Based Density Clustering using Graphics Processors

FE

BE

app app app app

BE

app app app app

BE

app app app app

CP CP

BE

app app app app

TBON is a distributed
computing model designed to
be scalable, efficient, and
flexible.

Flexible aggregation provided
by user defined functions in
filters

Ideal Characteristics:

o Filter output size
constant or decreasing
o Computation rate similar
across levels

Data Size:

10MB per BE

Packet Size:

 ≤10 MB

Packet Size:

≤10 MB

~10 sec

~10 sec

~10 sec

~10 sec

…

Data to process:

e.g. 40 MB
Total Time: ~30 sec

Filter Filter Filter

Filter Filter

Filter

Filter F(x1,…,xn)

Why GPUs In A TBON?

3 Tree-Based Density Clustering using Graphics Processors

FE

… … …
BE

app app app app

BE

app app app app

BE

app app app app

CP CP

CP CP CP CP

BE

app app app app

o Increase compute power

o Trade computation for
 bandwidth

o Derived summaries
o Compute and send ∆ data
o Compressions (bzip, lzo,
 gzip, …)

o Filter function is a natural
encapsulation for CUDA

F(x1,…,xn)

The Tweet Stream

4 Tree-Based Density Clustering using Graphics Processors

`

`

Source: Twitter, Map: About.com

Goal: Find regions that meet minimum

density and spatial distance characteristics

The two parameters that determine if a

point is in a cluster is Epsilon (Eps), and

MinPts

If the number of points in Eps is > MinPts,

the point is a core point.

For every discovered point, this same

calculation is performed until the cluster is

fully expanded

Clustering Example (DBSCAN[1])

5 Tree-Based Density Clustering using Graphics Processors

Eps Min Points

Min Pts: 3

[1] M. Ester et. al., A density-based algorithm for discovering clusters in large spatial databases with

noise, (1996)

Previous Work In Scaling DBSCAN

o PDBSCAN[2]

oQuality equivalent to single DBSCAN

o Linear speedup up to 8 nodes

o DBDC[3]

o Sacrifices quality

o ~30x speedup on 15 nodes

o CUDA-Dclust[4]

oQuality equivalent to DBSCAN

o ~15x faster on 1 node

 6 Tree-Based Density Clustering using Graphics Processors

[2] X. Xu et. al., A fast Parallel Clustering Algorithm for Large Spatial Databases (1999)

[3] E. Januzaj et. al., DBDC: Density Based Distributed Clustering (2004)

[4] C. Bohm et al., Density-based clustering using graphics processors (2009)

Tree-Based Clustering: Mr. Scan

7 Tree-Based Density Clustering using Graphics Processors

FE

BE BE BE

CP CP

BE

DBSCAN

Algorithm Steps

SpatialDecomp: CPU(@ FE)

DBSCAN: CPU or GPU(@ BE)

DrawBoundBox: CPU or GPU

MergeCluster: CPU (x #levels)

MergeCluster

Spatial Decomposition

8 Tree-Based Density Clustering using Graphics Processors

1. Start with an input of Spatially Referenced points

2. Partition the region into equal sized density regions across one dimension

3. Add the shadow region area of one Epsilon to all density regions

Partition #1 Partition #2 Partition #3

Eps

GPU DBSCAN Filter

9 Tree-Based Density Clustering using Graphics Processors

CUDA-DCLUST [09 – Böhm]

Multiple clusters are expanded simultaneously

DrawBoundBox – CPU or GPU

10 Tree-Based Density Clustering using Graphics Processors

Merge Step

o Checks for merge if box within shadow

o At least one core point MUST be in common

o Iterate through ALL points in right cluster

11 Tree-Based Density Clustering using Graphics Processors

Match!

Preliminary Evaluation

o Dataset: 1-3 “Tweet Days”

o Measuring:

o Time to completion

o Algorithms:

o Single-Threaded DBSCAN

oMRNet w/DBSCAN filter

oMRNet w/DBSCAN GPU filter

12 Tree-Based Density Clustering using Graphics Processors

13 Tree-Based Density Clustering using Graphics Processors

0:00:00

2:24:00

4:48:00

7:12:00

9:36:00

12:00:00

14:24:00

16:48:00

19:12:00

CPU DBSCAN GPU DBSCAN

T
im

e
 (

H
:M

:S
)

Single Node Performance

1-day (662,699 Points)

3-day (1,953,258 Points)

14 Tree-Based Density Clustering using Graphics Processors

0

200

400

600

800

1000

1200

1x16 1x2x4 1x2x16

R
u

n
 T

im
e
 (

S
e
c
o

n
d

s)

MRNet Topology

Single Day DBSCAN Run (662,966 Points)

CPU - MRNet

GPU - MRNet

15 Tree-Based Density Clustering using Graphics Processors

0

5000

10000

15000

20000

25000

1x16 1x2x4 1x2x16

R
u

n
 T

im
e
 (

S
e
c
o

n
d

s)

MRNet Topology

Three Day DBSCAN Run (1,953,258 Points)

CPU - MRNet

GPU - MRNet

16 Tree-Based Density Clustering using Graphics Processors

0

10

20

30

40

50

60

4 8 12 16

S
p

e
e
d

u
p

 (
X

 o
f

S
in

g
le

 C
P

U
 N

o
d

e
)

of Backend Nodes

Speedup of 3 tweet days (1,953,258 Points)

GPU - MRNet; 1xN

Topology

GPU - MRNet; 1x2xN

Topology

0

10

20

30

40

50

60

4 8 12 16S
p

e
e

d
u

p
 (

X
 o

f
S

in
g
le

 n
o

d
e

)

of Backend Nodes

Discussion

17 Tree-Based Density Clustering using Graphics Processors

Preliminary evaluation raises some important questions

o What is causing DBSCAN to

scale poorly?

o Why is GPU scaling somewhat

 erratic?

o How can we get to really large

node counts?

0

10000

20000

30000

40000

50000

60000

70000

10000 20000 30000 40000 50000 60000

S
p

e
e

d
u

p
 (

X
 o

f
si

n
g
le

 n
o

d
e

)

of Backend Nodes

Causes Of Poor Scaling

o Merging Algorithm

o Slow algorithm for detecting collisions between

clusters. Worst case – O(N2)

o Internal node load imbalance due to partitioning.

18 Tree-Based Density Clustering using Graphics Processors

FE

CP
CP

BE BE BE
BE

Causes Of Poor Scaling

o Decomposition

19 Tree-Based Density Clustering using Graphics Processors

o Requiring a full survey of the data on a single node prior to

performing the decomposition limits the maximum input data

set size

o Single dimensional decomposition limits the ability to

evenly distribute workload.

7pts 11pts

Eps

Current Work

o Addressing Scaling Issues

o Spatial Decomposition

oMerging Algorithm

20 Tree-Based Density Clustering using Graphics Processors

Spatial Decomposition

21 Tree-Based Density Clustering using Graphics Processors

o 1D spatial decomposition has some severe limitations

o Partitions can have wildly differing point counts

o Number of partitions are limited by Epsilon

o 2D spatial decomposition allows for a finer grain

breakdown of the regions.

7pts 11pts

Eps

Merging Algorithm

o Two major scalability challenges

o Reducing the total number of required merges as data

moves up the tree

oComputational complexity of the merges

22 Tree-Based Density Clustering using Graphics Processors

Merging Algorithm

23 Tree-Based Density Clustering using Graphics Processors

BE BE BE BE

CP CP CP CP

CP

Region with cluster

Spatial Grid

4 Data Regions

0 Merge Operations

16 Data Regions

4 Merge Operations

Merging Algorithm

24 Tree-Based Density Clustering using Graphics Processors

Merge detection is currently to slow.

Can we improve our average case running time to avoid O(N2)?

1-Eps Region

1-Eps Shadow

Region

1. No points in common (no merge) – O(1)

Region of cluster

core points

Region of cluster

Non-Core points

2. Core points overlap – O(1)

3. Core/Non-Core point overlap – O(N2)

Wrap Up

o Promising GPU results

o Lots of work left at the tree level

o We have delusions of grandeur

25 Tree-Based Density Clustering using Graphics Processors

Questions?

26 Tree-Based Density Clustering using Graphics Processors

