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TBON Computation 
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TBON is a distributed 
computing model designed to 
be scalable, efficient, and 
flexible. 
 
Flexible aggregation provided 
by user defined functions in 
filters  
 
Ideal Characteristics: 

o Filter output size 
constant or decreasing 
o Computation rate similar 
across levels 
 

 
 

Data Size:  

10MB per BE 

Packet Size:  

 ≤10 MB 

Packet Size: 

≤10 MB 

~10 sec 

~10 sec 

~10 sec 

~10 sec 

… 

Data to process:  

e.g. 40 MB 
Total Time:  ~30 sec 

Filter Filter Filter 

Filter Filter 

Filter 

Filter F(x1,…,xn) 



Why GPUs In A TBON? 
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o Increase compute power 
 
o  Trade computation for  
    bandwidth 

o Derived summaries 
o Compute and send ∆ data 
o Compressions (bzip, lzo,  
   gzip, …) 
 

o Filter function is a natural 
encapsulation for CUDA 

F(x1,…,xn) 



The Tweet Stream 
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Source: Twitter, Map: About.com 



Goal: Find regions that meet minimum 

density and spatial distance characteristics 

The two parameters that determine if a 

point is in a cluster is Epsilon (Eps), and 

MinPts 

If the number of points in Eps is > MinPts, 

the point is a core point. 

For every discovered point, this same 

calculation is performed until the cluster is 

fully expanded 

Clustering Example (DBSCAN[1]) 
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Eps Min Points 

Min Pts: 3 

[1] M. Ester et. al., A density-based algorithm for discovering clusters in large spatial databases with 

noise, (1996) 



Previous Work In Scaling DBSCAN 

o PDBSCAN[2] 

oQuality equivalent to single DBSCAN 

o Linear speedup up to 8 nodes 

o  DBDC[3] 

o Sacrifices quality 

o ~30x speedup on 15 nodes 

o CUDA-Dclust[4] 

oQuality equivalent to DBSCAN 

o ~15x faster on 1 node 
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[2] X. Xu et. al., A fast Parallel Clustering Algorithm for Large Spatial Databases (1999) 

[3] E. Januzaj et. al., DBDC: Density Based Distributed Clustering (2004) 

[4] C. Bohm et al., Density-based clustering using graphics processors (2009) 



Tree-Based Clustering: Mr. Scan 
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Algorithm Steps 

 

SpatialDecomp: CPU(@ FE) 

 

DBSCAN: CPU or GPU(@ BE) 

 

DrawBoundBox: CPU or GPU 

 

MergeCluster: CPU (x #levels) 

MergeCluster 



Spatial Decomposition 
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1. Start with an input of Spatially Referenced points 

2. Partition the region into equal sized density regions across one dimension 

3. Add the shadow region area of one Epsilon to all density regions 

Partition #1 Partition #2 Partition #3 

Eps 



GPU DBSCAN Filter 
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CUDA-DCLUST  [09 – Böhm]   

Multiple clusters are expanded simultaneously  



DrawBoundBox – CPU or GPU 
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Merge Step 

o Checks for merge if box within shadow 

o At least one core point MUST be in common 

o Iterate through ALL points in right cluster 
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Match! 



Preliminary Evaluation 

o Dataset: 1-3 “Tweet Days” 

o Measuring: 

o Time to completion 

o Algorithms: 

o Single-Threaded DBSCAN 

oMRNet w/DBSCAN filter 

oMRNet w/DBSCAN GPU filter 
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MRNet Topology 

Single Day DBSCAN Run (662,966 Points) 
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MRNet Topology 
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Discussion 
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Preliminary evaluation raises some important questions 

o What is causing DBSCAN to 

scale poorly?  

o Why is GPU scaling somewhat 

    erratic?  

o How can we get to really large 

node counts? 
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Causes Of Poor Scaling 

o Merging Algorithm 

o Slow algorithm for detecting collisions between 

clusters.  Worst case – O(N2)  

o Internal node load imbalance due to partitioning. 
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Causes Of Poor Scaling 

o Decomposition 
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o Requiring a full survey of the data on a single node prior to 

performing the decomposition limits the maximum input data 

set size 

 
o Single dimensional decomposition limits the ability to 

evenly distribute workload.  

 

7pts 11pts 

Eps 



Current Work 

o Addressing Scaling Issues 

o Spatial Decomposition 

oMerging Algorithm 
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Spatial Decomposition 
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o 1D spatial decomposition has some severe limitations 

o  Partitions can have wildly differing point counts 

o Number of partitions are limited by Epsilon  

o 2D spatial decomposition allows for a finer grain 

breakdown of the regions. 

7pts 11pts 

Eps 



Merging Algorithm 

o Two major scalability challenges 

o Reducing the total number of required merges as data 

moves up the tree 

oComputational complexity of the merges 
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Merging Algorithm 
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Merging Algorithm 
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Merge detection is currently to slow. 

 

Can we improve our average case running time to avoid O(N2)? 

1-Eps Region 

1-Eps Shadow 

Region 

1. No points in  common (no merge) – O(1)  

Region of cluster 

core points 

Region of cluster 

Non-Core points 

2.  Core points overlap – O(1) 

3.  Core/Non-Core point overlap – O(N2) 



Wrap Up 

o Promising GPU results 

o Lots of work left at the tree level 

o We have delusions of grandeur  
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Questions? 
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