
Scalable Performance Analysis
on Heterogeneous Architectures

with HPCToolkit

Milind Chabbi, Karthik Murthy,
Mike Fagan, and John Mellor-Crummey

Rice University

CScADS 2012
Snowbird, Utha
June 26, 2012

Tuesday, June 26, 12

HPCToolkit

• Performance measurement using statistical sampling of
timers and performance counters

• Attribution to hierarchical calling context

• Works on multilingual, fully-optimized, statically or
dynamically linked applications (no source modification)

✦ Pthread, OMP, MPI, and any combination

• Low overhead (under 5%) for both profiling and tracing

• Scales to large parallel systems

• Analysis of execution costs, inefficiencies, and scaling
characteristics

Tuesday, June 26, 12

Supporting Heterogeneity in
HPCToolkit

• Heterogeneous does’t mean just GPU kernel

• Most work on the performance analysis of
heterogeneous architectures deals with

✦ Identifying GPU-kernel-level issues, and improving via: kernel fusion,
unrolling, memory access reordering, etc.

• They ignore other parts of heterogeneous systems viz.

✦ Nodes with several GPUs and CPUs, and CPUs with several threads

✦ GPUs shared by multiple ranks, and concurrent kernel executions

✦ Inter-node, and intra-node communication

Tuesday, June 26, 12

Should Measure, Analyze and Present
Performance of

• A standalone GPU kernel

✦ Timing, and hardware counter values

• Concurrently executing GPU kernels on multiple
graphics cards

✦ Challenges: concurrent streams, multiple threads, multiple contexts,
GPU sharing between threads and processes

• Data communication between CPUs and GPUs

• Multi-threaded processes

• Multiple MPI processes
Tuesday, June 26, 12

And It Should Scale

• Should be able to gather data from thousands of nodes

✦ Each with several CPUs, Cores, and multiple GPU cards

• Should not distort original execution overlap

• Should have low runtime overhead

• Should produce manageable profile and trace files

Tuesday, June 26, 12

Focus on Resource (under) Utilization

• Heterogeneous systems have multiple resources each
with disparate capabilities

• Classical “hot-spot” analysis is insufficient

✦ Focuses on “most consumed” resources

✦ Provides only symptoms of problems

✦ Does not indicate causes of problems

• Key to achieving peek performance on heterogeneous
systems is to keep all compute resources working
simultaneously

✦ Overlap computations on multiple resources

Tuesday, June 26, 12

Work Balance Between
CPU and GPU

Matrix multiplication on Nvidia 8800 GTX
(575 Mhz) and Intel Core2 Quad (2.4Ghz)

Figure credit: Qilin Exploiting Parallelism on Heterogeneous Multiprocessors

• Offloading entire
computation to GPUs
wastes CPU compute
power

• Offloading entire
computation to CPUs
wastes GPU compute
power

Tuesday, June 26, 12

Root Cause Analysis with
Blame Shifting

• If GPU is idle, code executing on CPU is responsible for
not offloading (enough) work to GPU

✦ Attribute blame to CPU code executing while GPU is idle

• If CPU is idle waiting for GPU kernel(s) to finish,
executing GPU kernel(s) are responsible for CPU
idleness

✦ Attribute proportional blame to each such kernels

• Credit codes that are well overlapped

Tuesday, June 26, 12

Performance Expectations for
Heterogeneous Systems with Blame Shifting

CPU
WORK SYNC CPU

WORK SYNC

Kernel A Kernel B

Idle Idle

Top GPU-kernel may not be the best candidate for tuning
Tuesday, June 26, 12

Performance Expectations for
Heterogeneous Systems with Blame Shifting

CPU
WORK SYNC CPU

WORK SYNC

5% expected gain by
tuning Kernel A

Kernel A Kernel B

Idle Idle

Top GPU-kernel may not be the best candidate for tuning
Tuesday, June 26, 12

Performance Expectations for
Heterogeneous Systems with Blame Shifting

CPU
WORK SYNC CPU

WORK SYNC

5% expected gain by
tuning Kernel A

40% expected gain
by tuning Kernel B

Kernel A Kernel B

Idle Idle

Top GPU-kernel may not be the best candidate for tuning
Tuesday, June 26, 12

Performance Expectations for
Heterogeneous Systems with Blame Shifting

CPU
WORK SYNC CPU

WORK SYNC

5% expected gain by
tuning Kernel A

40% expected gain
by tuning Kernel B

Kernel A Kernel B

Idle Idle

Top GPU-kernel may not be the best candidate for tuning

Hot spot
analysis Blame shifting

Tuesday, June 26, 12

Performance Expectations for
Heterogeneous Systems with Blame Shifting

CPU
WORK SYNC CPU

WORK SYNC

5% expected gain by
tuning Kernel A

40% expected gain
by tuning Kernel B

Kernel A Kernel B

Idle Idle

Top GPU-kernel may not be the best candidate for tuning

Hot spot
analysis Blame shifting

Visa-versa is also true

Tuesday, June 26, 12

Advantages of Blame Shifting on
Heterogeneous Systems

• Pinpoints codes (both GPU kernels and CPU contexts)
that benefit most from tuning

✦ Improves developer productivity

✦ Full calling context to distinguish same kernel, different callpath

• Provides an expectation for the upper bound of
performance gain when tuning

• Sampling-based approach keeps overhead low and
provides scalability

• Extends naturally to any shared resource

✦ GPU, communication network, I/O network
Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

GPU
stream
Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

GPU
stream

K
e
r
n
e
l

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

GPU
stream

K
e
r
n
e
l

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

cudaDevice
Synchronize()K

e
r
n
e
l

Kernel Execution

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

cudaDevice
Synchronize()K

e
r
n
e
l

Kernel Execution

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()K

e
r
n
e
l

Kernel Execution

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()

EventQ
uery

EventQ
uery

K
e
r
n
e
l

Kernel Execution

GPU ONLY

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()

EventQ
uery

EventQ
uery

K
e
r
n
e
l

Kernel Execution

CPU IDLE

GPU ONLY

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()

EventQ
uery

EventQ
uery

K
e
r
n
e
l

Kernel Execution

CPU IDLE

GPU ONLY

Blame

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()

EventQ
uery

EventQ
uery

K
e
r
n
e
l

Kernel Execution

CPU IDLE

GPU ONLY

Blame

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()

EventQ
uery

EventQ
uery

K
e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

CPU IDLE

GPU ONLY

Blame

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()

EventQ
uery

EventQ
uery

K
e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

GPU IDLE

CPU IDLE

GPU ONLY

Blame

Tuesday, June 26, 12

Proxy Sampling of GPU Activities

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()

EventQ
uery

EventQ
uery

K
e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

GPU IDLE

CPU IDLE

GPU ONLY

Blame

Blame

Tuesday, June 26, 12

Implementation Challenges
• No sampling support from GPUs

✦ Would have liked timer/counter-based signals from GPUs

• CUPTI has several limitations (some fixed in 5.0RC)

✦ Kernel serialization when using CUPTI

✦ Serialization of CPU threads simultaneously using CUPTI

✦ Activity API is more tracing style, not suitable for profiling

• CUDA limitations (supposed to be fixed in Kepler 2)

✦ Kernel serialization when using events for querying/timing

• Can’t poke GPU with cudaEventQuery() from a signal
handler when thread is inside a CUDA API call

Tuesday, June 26, 12

Workarounds

• CUDA Function wrapping to inject events

✦ Eliminates CPU threads serialization

✦ Waiting for Kepler-2 to fix kernel serialization when using events

• Disable calling cudaEventQuery() from signal handler
when CPU is inside CUDA API

✦ Deferred blaming of kernels

Tuesday, June 26, 12

Workarounds: Deferred Blaming

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()

EventQ
uery

EventQ
uery

K
e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

GPU IDLE

CPU IDLE

GPU ONLY

Blame

Blame

T1

Tuesday, June 26, 12

Workarounds: Deferred Blaming

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()

EventQ
uery

EventQ
uery

K
e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

GPU IDLE

CPU IDLE

GPU ONLY

Blame

Blame

T1

Tuesday, June 26, 12

Workarounds: Deferred Blaming

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()K

e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

GPU IDLE
GPU ONLY

Blame

T1

Tuesday, June 26, 12

Workarounds: Deferred Blaming

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()K

e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

GPU IDLE
GPU ONLY

Blame

Blind zoneT1 T2 T3

Tuesday, June 26, 12

Workarounds: Deferred Blaming

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()K

e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

GPU IDLE
GPU ONLY

Blame

Blame

Blind zone

Post blind zone

T1 T2 T3

Tuesday, June 26, 12

Workarounds: Deferred Blaming

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()K

e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

GPU IDLE

Blame

e
v
e
n
t

GPU ONLY

Multiple kernels

Post blind zone

Blind zoneT1 T2 T3

Tuesday, June 26, 12

Workarounds: Deferred Blaming

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()K

e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

GPU IDLE

Blame

e
v
e
n
t

GPU ONLY

Blame

Multiple kernels

Post blind zone

Blind zoneT1 T2 T3

Tuesday, June 26, 12

Workarounds: Deferred Blaming

CPU
thread

e
v
e
n
t

e
v
e
n
t

e
v
e
n
t

e
v
e
n
tGPU

stream

Overlap

EventQ
uery

EventQ
uery

cudaDevice
Synchronize()K

e
r
n
e
l

Kernel Execution

CPU ONLY

G
PU

 idle

G
PU

 idle

GPU IDLE

Blame

e
v
e
n
t

GPU ONLY

BlameBlame

Multiple kernels

Post blind zone

Blind zoneT1 T2 T3

Tuesday, June 26, 12

HPCToolkit vs. TAU & Vampir
Time Overhead

Program Base
runtime

HPCToolkitHPCToolkit TAUTAU Vampir
Program Base

runtime
Profiling Tracing Profiling Tracing Tracing

LAMMPS
rhodopsin protein in
solvated lipid bilaye

(32procs,
6 nodes, 6ppn,
3 gpu/node)

26.8264
sec

8.9%
(29.2059s)

10%
(29.5081s)

3.1x
(83.6458s)

3.3x
(89.5835s)

156x
(4182.72s)

LULESH
(1 node, 1proc,

1 gpu)

17.4887
sec

4.1%
(18.2031s)

5.8%
(18.5003s)

47%
(25.7486s)

44%
(25.1442s)

5.2X
(90.8506s)

Keeneland : Intel Westmere hex-core CPUs@2.8GHz, 24GB,
NVIDIA 6GB Tesla M 2090 GPUs, and a Qlogic QDR InfiniBand interconnect

Tuesday, June 26, 12

mailto:CPUs@2.8GHz
mailto:CPUs@2.8GHz

HPCToolkit vs. TAU & Vampir
Data Volume

Program
HPCToolkitHPCToolkit TAUTAU Vampir

Program
Profiling Tracing Profiling Tracing Tracing

LAMMPS
(32procs,

6 nodes, 6ppn,
3 gpu/node)

16MB 57MB 43x
(693MB)

216x
(12GB)

1491x
(83GB)

LULESH 268KB 4MB 3.5x
(948KB)

42.8x
(171MB)

140.25x
(561MB)

Tuesday, June 26, 12

Insights via Blame Shifting in
LULESH CUDA

• Simulations involving complex multi-material motion are
one of the the most CPU time consuming applications

✦ LULESH: classic hydro-dynamics code, solves Sedov blast wave
problem with “leap frog” time integration scheme

• CUDA version available from LLNL

• DEMO

Tuesday, June 26, 12

LULESH CUDA Memory Allocation

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

7.E+07

8.E+07

9.E+07

1 11

21

31

41

51

61

71

81

91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

30
1

31
1

32
1

To
ta

l b
yt

es
 a

llo
ca

te
d

Memory request with time

Time step 1 Time step 2 Time step 3 Time step 4

Tuesday, June 26, 12

LULESH CUDA Memory Allocation

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

7.E+07

8.E+07

9.E+07

1 11

21

31

41

51

61

71

81

91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

30
1

31
1

32
1

To
ta

l b
yt

es
 a

llo
ca

te
d

Memory request with time

Time step 1 Time step 2 Time step 3 Time step 4

Replaced repeated memory allocation/free with a global
allocation: 30% running time improvement

Tuesday, June 26, 12

LAMMPS on LJ
• Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS): Classical molecular dynamics code

• Two CUDA versions

✦ GPU

★ Designed to exploit common GPU hardware configurations wAtom-based data (e.g.
coordinates, forces) moves back-and-forth between the CPU(s) and GPU every
timestep.

★ Neighbor lists can be constructed on the CPU or on the GPU

★ The charge assignment and force interpolation portions of PPPM can be run on the
GPU. The FFT portion runs on the CPU.

★ Asynchronous force computations can be performed simultaneously on the CPU(s) and
GPU.

✦ USER-CUDA (all on GPU)

★ Many timesteps, to run entirely on the GPU
Tuesday, June 26, 12

Conclusions

• Hybrid CPU/GPU blame shifting with HPCToolkit

✦ Provides novel and practical technique for performance analysis of
heterogeneous systems

✦ Pinpoints code fragments (CPU and GPU) worth tuning

★ Improves developer productivity

✦ Provides scalable performance measurement and analysis with low
space and time overhead compared to state-of-the-art tools

• Several implementation challenges

✦ Better API/hardware support from vendor can eliminate
workarounds in all tools

Tuesday, June 26, 12

Conclusions

• Hybrid CPU/GPU blame shifting with HPCToolkit

✦ Provides novel and practical technique for performance analysis of
heterogeneous systems

✦ Pinpoints code fragments (CPU and GPU) worth tuning

★ Improves developer productivity

✦ Provides scalable performance measurement and analysis with low
space and time overhead compared to state-of-the-art tools

• Several implementation challenges

✦ Better API/hardware support from vendor can eliminate
workarounds in all tools

Tuesday, June 26, 12

