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HPCToolkit

• Performance measurement using statistical sampling of 
timers and performance counters

• Attribution to hierarchical calling context

• Works on multilingual, fully-optimized, statically or 
dynamically linked applications (no source modification)

✦ Pthread, OMP, MPI, and any combination

• Low overhead (under 5%) for both profiling and tracing

• Scales to large parallel systems

• Analysis of execution costs, inefficiencies, and scaling 
characteristics
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Supporting Heterogeneity in 
HPCToolkit

• Heterogeneous does’t mean just GPU kernel

• Most work on the performance analysis of 
heterogeneous architectures deals with 

✦ Identifying GPU-kernel-level issues, and improving via: kernel fusion, 
unrolling, memory access reordering, etc.

• They ignore other parts of heterogeneous systems viz.

✦ Nodes with several GPUs and CPUs, and CPUs with several threads

✦ GPUs shared by multiple ranks, and concurrent kernel executions

✦ Inter-node, and intra-node communication
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Should Measure,  Analyze and Present 
Performance of

• A standalone GPU kernel

✦ Timing, and hardware counter values

• Concurrently executing GPU kernels on multiple 
graphics cards

✦ Challenges: concurrent streams, multiple threads, multiple contexts, 
GPU sharing between threads and processes

• Data communication between CPUs and GPUs

• Multi-threaded processes

• Multiple MPI processes
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And It Should Scale

• Should be able to gather data from thousands of nodes

✦ Each with several CPUs, Cores, and multiple GPU cards

• Should not distort original execution overlap

• Should have low runtime overhead

• Should produce manageable profile and trace files
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Focus on Resource (under) Utilization

• Heterogeneous systems have multiple resources each 
with disparate capabilities 

• Classical “hot-spot” analysis is insufficient

✦ Focuses on “most consumed” resources

✦ Provides only symptoms of problems

✦ Does not indicate causes of problems

• Key to achieving peek performance on heterogeneous 
systems is to keep all compute resources working 
simultaneously

✦ Overlap computations on multiple resources
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Work Balance Between 
CPU and GPU

Matrix multiplication on Nvidia 8800 GTX 
(575 Mhz) and Intel Core2 Quad (2.4Ghz)

Figure credit: Qilin Exploiting Parallelism on Heterogeneous Multiprocessors 

• Offloading entire 
computation to GPUs 
wastes CPU compute 
power

• Offloading entire 
computation to CPUs 
wastes GPU compute 
power
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Root Cause Analysis with 
Blame Shifting

• If GPU is idle, code executing on CPU is responsible for 
not offloading (enough) work to GPU

✦ Attribute blame to CPU code executing while GPU is idle 

• If CPU is idle waiting for GPU kernel(s) to finish, 
executing GPU kernel(s) are responsible for CPU 
idleness 

✦ Attribute proportional blame to each such kernels

• Credit codes that are well overlapped
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Performance Expectations for 
Heterogeneous Systems with Blame Shifting 

CPU 
WORK SYNC CPU 

WORK SYNC

Kernel A Kernel B

Idle Idle

Top GPU-kernel may not be the best candidate for tuning
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Visa-versa is also true

Tuesday, June 26, 12



Advantages of Blame Shifting on 
Heterogeneous Systems

• Pinpoints codes (both GPU kernels and CPU contexts) 
that benefit most from tuning

✦ Improves developer productivity

✦ Full calling context to distinguish same kernel, different callpath

• Provides an expectation for the upper bound of 
performance gain when tuning

• Sampling-based approach keeps overhead low and 
provides scalability

• Extends naturally to any shared resource

✦ GPU, communication network, I/O network
Tuesday, June 26, 12



Proxy Sampling of GPU Activities
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Implementation Challenges
• No sampling support from GPUs

✦ Would have liked timer/counter-based signals from GPUs 

• CUPTI has several limitations (some fixed in 5.0RC)

✦ Kernel serialization when using CUPTI

✦ Serialization of CPU threads simultaneously using CUPTI

✦ Activity API is more tracing style, not suitable for profiling

• CUDA limitations (supposed to be fixed in Kepler 2)

✦ Kernel serialization when using events for querying/timing

• Can’t poke GPU with cudaEventQuery() from a signal 
handler when thread is inside a CUDA API call

Tuesday, June 26, 12



Workarounds

• CUDA Function wrapping to inject events

✦ Eliminates CPU threads serialization

✦ Waiting for Kepler-2 to fix kernel serialization when using events

• Disable calling cudaEventQuery() from signal handler 
when CPU is inside CUDA API

✦ Deferred blaming of kernels
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HPCToolkit vs. TAU & Vampir 
Time Overhead

Program Base 
runtime

HPCToolkitHPCToolkit TAUTAU Vampir
Program Base 

runtime
Profiling Tracing Profiling Tracing Tracing

LAMMPS
rhodopsin protein in 
solvated lipid bilaye

(32procs, 
6 nodes, 6ppn, 
3 gpu/node)

26.8264
sec

8.9%
(29.2059s)

10%
(29.5081s)

3.1x
(83.6458s)

3.3x
(89.5835s)

156x
(4182.72s)

LULESH
(1 node, 1proc, 

1 gpu)

17.4887
sec 

4.1%
(18.2031s)

5.8% 
(18.5003s)

47%
(25.7486s)

44%
(25.1442s)

5.2X
(90.8506s)

Keeneland : Intel Westmere hex-core CPUs@2.8GHz, 24GB,  
NVIDIA 6GB Tesla M 2090 GPUs, and a Qlogic QDR InfiniBand interconnect
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HPCToolkit vs. TAU & Vampir 
Data Volume

Program
HPCToolkitHPCToolkit TAUTAU Vampir

Program
Profiling Tracing Profiling Tracing Tracing

LAMMPS
(32procs, 

6 nodes, 6ppn, 
3 gpu/node)

16MB 57MB 43x
(693MB)

216x
(12GB)

1491x
(83GB)

LULESH 268KB 4MB 3.5x
(948KB)

42.8x
(171MB)

140.25x
(561MB)
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Insights via Blame Shifting in 
LULESH CUDA

• Simulations involving complex multi-material motion are 
one of the the most CPU time consuming applications 

✦ LULESH: classic hydro-dynamics code, solves Sedov blast wave 
problem with “leap frog” time integration scheme

• CUDA version available from LLNL

• DEMO
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LULESH CUDA Memory Allocation

0.E+00 

1.E+07 

2.E+07 

3.E+07 

4.E+07 

5.E+07 

6.E+07 

7.E+07 

8.E+07 

9.E+07 

1 11
 

21
 

31
 

41
 

51
 

61
 

71
 

81
 

91
 

10
1 

11
1 

12
1 

13
1 

14
1 

15
1 

16
1 

17
1 

18
1 

19
1 

20
1 

21
1 

22
1 

23
1 

24
1 

25
1 

26
1 

27
1 

28
1 

29
1 

30
1 

31
1 

32
1 

To
ta

l b
yt

es
 a

llo
ca

te
d 

Memory request with time 

Time step 1 Time step 2 Time step 3 Time step 4

Tuesday, June 26, 12



LULESH CUDA Memory Allocation

0.E+00 

1.E+07 

2.E+07 

3.E+07 

4.E+07 

5.E+07 

6.E+07 

7.E+07 

8.E+07 

9.E+07 

1 11
 

21
 

31
 

41
 

51
 

61
 

71
 

81
 

91
 

10
1 

11
1 

12
1 

13
1 

14
1 

15
1 

16
1 

17
1 

18
1 

19
1 

20
1 

21
1 

22
1 

23
1 

24
1 

25
1 

26
1 

27
1 

28
1 

29
1 

30
1 

31
1 

32
1 

To
ta

l b
yt

es
 a

llo
ca

te
d 

Memory request with time 

Time step 1 Time step 2 Time step 3 Time step 4

Replaced repeated memory allocation/free with a global 
allocation: 30% running time improvement
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LAMMPS on LJ
• Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS): Classical molecular dynamics code

• Two CUDA versions

✦ GPU

★ Designed to exploit common GPU hardware configurations wAtom-based data (e.g. 
coordinates, forces) moves back-and-forth between the CPU(s) and GPU every 
timestep.

★ Neighbor lists can be constructed on the CPU or on the GPU

★ The charge assignment and force interpolation portions of PPPM can be run on the 
GPU. The FFT portion runs on the CPU.

★ Asynchronous force computations can be performed simultaneously on the CPU(s) and 
GPU.

✦ USER-CUDA (all on GPU)  

★ Many timesteps, to run entirely on the GPU
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Conclusions

• Hybrid CPU/GPU blame shifting with HPCToolkit 

✦ Provides novel and practical technique for performance analysis of 
heterogeneous systems

✦ Pinpoints code fragments (CPU and GPU) worth tuning

★ Improves developer productivity

✦ Provides scalable performance measurement and analysis with low 
space and time overhead compared to state-of-the-art tools

• Several implementation challenges

✦ Better API/hardware support from vendor can eliminate 
workarounds in all tools

Tuesday, June 26, 12



Conclusions

• Hybrid CPU/GPU blame shifting with HPCToolkit 

✦ Provides novel and practical technique for performance analysis of 
heterogeneous systems

✦ Pinpoints code fragments (CPU and GPU) worth tuning

★ Improves developer productivity

✦ Provides scalable performance measurement and analysis with low 
space and time overhead compared to state-of-the-art tools

• Several implementation challenges

✦ Better API/hardware support from vendor can eliminate 
workarounds in all tools

Tuesday, June 26, 12


