
Node-wide Performance (and Power) Introspection

Applied to Scheduling

Robert Fowler, Anirban Mandal, Allan Porterfield
RENCI, UNC-Chapel Hill

Adaptive systems and applications are the future.

• Outline

– Hardware issues:

• The constrained evolution of processor design.

• The hardware already adapts itself.

– Off-chip bottlenecks: memory (and I/O).

– Whole node measurement in support of

introspection.

– Won’t actually get to adaptive, introspective

scheduling.

Presentation title goes here 2

Dennard Scaling of CMOS Logic.

• Series of papers 1972-1974 by Bob Dennard and others at
IBM on scaling properties of CMOS logic circuits (gates and
wires!).

• Linear scaling of all transistor parameters.
– Reduce feature size by a factor of S. Typically, 0.7/generation.

• Including gate insulator thickness!

– Reduce supply voltage (Vdd) by S to keep electric field constant.

– Adjust doping of silicon gate region to compensate.

• Consequences
– Area shrinks by S2, Cgate and delay (1/f) reduced by S.

– Power ≈ CV2f  Power per gate goes down by S2

– Area and power track each other so power density is unchanged.

– For a constant die area and design density, power and power
density are constant and frequency can be increased.

Other Aspects of Dennard Scaling.

• Wire resistance/unit length ~ S2

• Wire capacitance/unit length ~ 1

• RC delay/unit length (unrepeated) ~ S2

• Die size (D) increases, so “long” wires increase by D

• Unrepeated wire delay ~ S2D2, repeated ~ D sqrt(S)
Signals cannot cross the chip in one cycle.

Moore's law
Empirical observation and self-fulfilling prophesy:

Circuit element count doubles every N months. (N ~18)

• Technological explanation: Features shrink, semiconductor dies grow.

• Dennard scaling: Gate delays decrease. Wires are relatively longer/slower.
– Dennard scaling has not been perfect in practice and is coming to an end.

• In the past, the focus has been making "conventional" processors faster.
– Faster clocks

– Clever architecture and implementation  instruction-level parallelism.

– Clever architecture (speculation, predication, etc), HW/SW Prefetching, and massive caches
ease the “memory wall” problem.

• Problems:

– Faster clocks --> more power.

– Power scaling law for CMOS: P = αCV2F, but Fmax~ V so P ~ F3

• Where α is proportional to the avg. number of gates active per clock cycle.

– Smaller transistors + long wires  either slow clock, or pipelined communication.

– More power goes to overhead: cache, predictors, “Tomasulo”, clock, …

– Big dies --> fewer dies/wafer, lower yields, higher costs

– Aggregate effect --> Expensive, power-hog processors on which some signals take 6 cycles
to cross.

The End of Dennard Scaling: Dark and Dim Silicon

• Vdd Scaling issues
– Initially, designers constrained by standards: 12V, 5V, 3.3V.

– On-board power regulation now allows Vdd to be 1V or less.

– This is getting uncomfortably close to threshold voltages.

– Decreasing thresholds has rapidly increased leakage current/power.

– Decreasing f allows operation with higher thresholds.

• Gate Insulator issues
– Thickness is now ~ 5 atoms

• Useful work and duty cycles
– Bailey and Snyder (1988) observed that α was at most a few percent for processors.

If α were much larger, chips would melt.

– Aggressive architectures have increased α to do bookkeeping, data movement, …

• “Dark” and “dim” silicon refer to schemes to reduce α and/or f to reduce
power.
– Heterogeneous cores and purpose built modules w. power mangement.

– Programmable logic and reconfigurable devices.

 We can now build chips that cannot be run at their full design potential.

“Dim silicon” adaptation in X64_64

• Intel: On-chip control processor
– “Turbo” modes throttle f when all cores are active.

• Run power-efficient, low f, low V in highly parallel code regions.

• Inefficient high f, high V in sequential regions.

– Shut down cores

– Automatic DVFS to keep within thermal budgets.
• Aggressive turbo mode when one core is active.

• Brief performance bursts when thermal headroom exists.

– “Balanced” mode DVFS to trade FLOPS and Watts.
• Reduce core frequency when code seems to be memory bound.

• AMD:
– Similar strategies

– Additionally, A-series can attempt to balance CPU and GPU
performance and power budgets.

Presentation title goes here 7

Moore’s Law/Dennard Scaling for DRAM.

• As more transistors were added to processor chips, they got
a lot faster.
– Dennard scaling for faster transistors.

– Clever architectures and on-chip concurrency.

• As more transistors were added to memory chips, they got a
lot bigger.
– Cleverness went into reliability, yield, …

– Small transistors are fast, but weak (can’t drive long wires).

– Little increase in on chip concurrency.

– Very low Rent’s law (surface/volume ratio) exponent!

Brown Bag Talk: Scaling Laws and HPC 8

Introduction Size Pins Cycle Time Bandwidth

DDR 2000 2 GB 168 5 ns 3.2 MB/sec

DDR2 2003 4 GB 184 3.75 ns 8.5 MB/sec

DDR3 2007(2009) 16 GB 240 5 ns 12.8 MB/sec

DDR4 2012(?) 25.6(?) MB/sec

Other Trends: Pins and GPU Memory

Little’s Law applied to Memory.

• Classic law/lemma in queuing theory
– (mean # in system/queue) = (arrival rate) (mean residence time)

• Communication (memory) restatement
– (concurrency) = (bandwidth) (latency)

 To increase bandwidth without decreasing latency, you have
to increase the concurrency of the system
– Wider channels to send more bits per operation.

– Overlapping, i.e., pipelined, operations.

Bottleneck  bandwidth plateaus, queuing latency dominates.

pChase

• Developed by Pase and Eckl @IBM

• Multi-threaded benchmark used to test memory throughput under
carefully controlled degrees of concurrent accesses

• Each thread executes a controllable number of ‘pointer-chasing’
operations – a memory-reference chain
– Pointer to the next memory location is stored in the current location. Grow

and randomize chain to defeat cache, prefetch.

– Dereference pointers in k independent chains concurrently, then use them.

• K=1 case measures memory latency.

• Large-k bandwidths are comparable to STREAM measurements at
“common” optimization levels.

• Our Modifications
– Added wrapper scripts around pChase to iterate over different numbers of

memory reference chains and threads

– Added affinity code to control thread and data placement

• Available at http://pchase.org

E5-2680 in “maxperf” mode.

Presentation title goes here 12

Resource Centric Performance Reflection:

RCRToolkit

• Performance measurement and analysis tool that focuses on shared
resources in a system

– Information and analysis should help applications and system code
introspectively, in real-time, to adapt to bottlenecks, power, thermal events.

• RCRToolkit consists of

– RCRblackboard

– Several clients for the RCRblackboard

• RCRblackboard

– Shared memory region (or, currently Google protocol buffers resident in
memory) for real time use by producers and consumers of node- and system-
wide performance information

– Information organized in a hierarchy that reflects hardware structure

– Coordination managed by the RCRblackboard protocol – multiple regions, each
owned by a single writer.

14

System 0

Rack 0

Node 0

Socket 0

Core 0

Core 1

Core 2

Core N

Shared
Caches

Shared
Resource

Node 1

Shared
NICs

IPMI /
RAS

Rack 1

RCR Daemon

RCR Blackboard
RCR

Viewer
RCR

Logger

 Threads

 MAESTRO/Qthreads

Other Performance
Tools (HPCToolkit etc.) /

Power Control Tools

App 1
App 2

App 3

RCRToolkit

Libra –
like

output

Net-
work

Core RCRblackboard Clients

• RCRdaemon
– Uses Linux MSR driver in conjunction with configuration information accessible

through libpfm4 (and other sources) to access off-core HPM counters.

– Off-core counters in PCI CONFIG space coming soon.

– Can co-exist with tools using Linux PerfEvents using on-core counters.

– Configuration file specifies which HPM events to monitor, as well as a set of derived
measures (“meters”) computable with simple arithmetic.

• RCRlogger and RCRviewer
– Read RCRblackboard information and output a log for post-execution analysis

– On-line monitoring.

• MAESTRO thread scheduler
– Adaptive, locality-aware scheduling of over-partitioned applications, e.g., OpenMP tasks,

loops with guided self-scheduling.

– Monitors shared resource usage and adapts scheduling during periods of high
utilization

– Writes scheduling decision information to RCRblackboard, including some source
attribution at the level of OpenMP loops and tasks.

Hot-wiring HPCToolkit to leverage RCRToolkit

• Experimental extension to HPCToolkit to act as an RCRblackboard client

• Goal: combine third-person, system-wide performance measures with

“first-person” call stack profiling.

• Accomplished by

– Command line extension to specify events to split based on RCR predicates.

– Modifying HPCToolkit’s event sampling code to examine RCRblackboard for

existence of shared resource bottlenecks.

– Monitoring whether the sampled event occurs when shared resource utilization

exceeds threshold set in RCRdaemon configuration

• Original HPCToolkit event is split into two sub-events that can be viewed

using an unmodified HPCViewer

Hot-wiring HPCToolkit (2)

• RCR augmented HPCToolkit metrics

– Extended command line argument to “hpcrun” command

– “hpcrun” event specification string was extended by adding a suffix string, delimited
by # and ^, which corresponds to a RCRToolkit derived system-wide metric with a
boolean value

– Example: If PAPI_L2_TCM is the base event and is passed as an extended
specification with hpcrun, and if the RCRToolkit derived metric is a threshold variable
corresponding to full utilization of a memory channel, we will have two HPCToolkit
metrics – one for normal PAPI_L2_TCM events and other for PAPI_L2_TCM events
that occurred during memory contention

– Currently, user has a dictionary of mapping between contentious events and shared
memory locations. (Symbolic specification via GPB “real soon now”)

– Augmented metric appears with a “RCR-” prefix in HPCViewer, for example RCR-
PAPI_L2_TCM

– Could go beyond simple predicates. Multiple sub-events? Integrate RCR metrics
rather than just a simple histogram?

Examples

• Analyzed memory performance of three applications/benchmarks

– Memory performance: significant source of bottlenecks on multi-core systems

– Lattice QCD “chroma”, Lattice Boltzmann Magneto HydroDynamics (LBMHD),

and Barcelona OpenMP FFT

• Each run is simultaneously measured by

– RCRToolkit

– Modified HPCToolkit hot-wired with RCRToolkit

• Two systems

– Dell PowerEdge M910 test system (MMQ)

– Two socket E5-2680 system

Nehalem EX Uncore.

• B-box has an In Memory Table (IMT) that tracks all in-flight memory block

operations and ensures that they are all unique

• Uncore counter, IMT_VALID_OCCUPANCY tracks number of unique entries

in the IMT == number of concurrent memory operations in flight

• RCRdaemon calculates IMT Average Occupancy = (count * 32 /cycles)

Sandy Bridge E5-26xx

Presentation title goes here 20

• Rich collection of uncore boxes.
• LLC is split into 8 pieces, each behind a CBox
• PMUs for CBoxes, Ubox, and PCU are accessible through MSR space.
• All other PMUs are in the PCI CONFIG space.
• LLC/Memory requests are queued in a per CBox TOR.
• We measure energy (power) consumption and TOR occupancy.

Validation and threshold selection.

• Used the pChase benchmark code to generate controlled

level of concurrent memory operations

• Bandwidth is observed to increase with load up to a

practical threshold after which requests are queued

• Using pChase, determined that memory contention

becomes severe when IMT Average Occupancy reaches 23,

and saturates at about 27

• Chose 23 as a threshold defining a memory controller

bottleneck.

pChase TOR Occupancy on SB

Presentation title goes here 22

pChase Power on Sandy Bridge 2600

Presentation title goes here 23

Evaluation: Lattice QCD “chroma” Application

• Open-source C++ based software system from US SciDAC QCD

initiative

• “chroma” is based on the QDP++ library that implements data-parallel

programming constructs for lattice field theory

• Application runs used unmodified MPI build of Chroma version 3.7.3 and

QDP++ version 1.35.1

– Used ‘clover’ sample input from the FermiLab QCD benchmark suite

• Ran on all 32 cores of MMQ

– For runs using HPCToolkit, RCRdaemon was running with a threshold for

Average IMT Occupancy set to 23

25

“chroma” Results: RCRToolkit

Doing I/O

26

“chroma” Results: RCRToolkit

27

“chroma”: HPCToolkit hot-wired with RCRToolkit

Chroma Power and L3 queue on SB.

28

Evaluation: LBMHD Benchmark

• The LBMHD benchmark models homogeneous isotropic turbulence in

dissipative magneto-hydrodynamics

• LBMHD code was obtained from S. Williams at Lawrence Berkeley

National Lab

• Ran on all 32 cores of MMQ

– For runs using HPCToolkit, RCRdaemon was running with a threshold for

Average IMT Occupancy set to 23

30

LBMHD on Nehalem EX: RCRToolkit

31

LBMHD Results: RCRToolkit

32

LBMHD: HPCToolkit hot-wired with RCRToolkit

Evaluation: FFT Benchmark

• Benchmark from the Barcelona OpenMP Tasks Suite (BOTS)

• FFT computes 1-dimensional FFT of a vector of n complex values using

the Cooley-Turkey algorithm

– Recursive algorithm that divides a DFT into smaller DFTs

– Each division generates multiple OpenMP tasks

– Version ran was compiled with ROSE source-to-source compiler and

executed with the Qthreads runtime

• Ran on all 32 cores of MMQ

– For runs using RCRToolkit, RCRdaemon was running with a threshold for

Average IMT Occupancy set to 23

34

FFT on Nehalem EX: RCRToolkit

35

FFT: HPCToolkit hot-wired with RCRToolkit

FFT TOR Occupancy on SB

36

We know, from the MMQ
results, that data is poorly
balanced between
memories. Why is there
an imbalance at the TOR?

FFT Power on SB

37

