
Node-wide Performance (and Power) Introspection 

Applied to Scheduling 

Robert Fowler, Anirban Mandal, Allan Porterfield  
RENCI, UNC-Chapel Hill 



Adaptive systems and applications are the future. 

• Outline 

– Hardware issues: 

• The constrained evolution of processor design. 

• The hardware already adapts itself. 

– Off-chip bottlenecks:  memory (and I/O). 

– Whole node measurement in support of 

introspection. 

–  Won’t actually get to adaptive, introspective 

scheduling. 
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Dennard Scaling of CMOS Logic. 

• Series of papers 1972-1974 by Bob Dennard and others at 
IBM on scaling properties of CMOS logic circuits (gates and 
wires!). 

• Linear scaling of all transistor parameters. 
– Reduce feature size by a factor of S.  Typically,  0.7/generation. 

• Including gate insulator thickness! 

– Reduce supply voltage (Vdd) by S to keep electric field constant. 

– Adjust doping of silicon gate region to compensate. 

• Consequences 
– Area shrinks by S2,   Cgate and delay (1/f) reduced by S. 

– Power ≈ CV2f  Power per gate goes down by S2 

– Area and power track each other so power density is unchanged. 

– For a constant die area and design density, power and power 
density are constant and frequency can be increased. 



Other Aspects of Dennard Scaling. 

• Wire resistance/unit length ~ S2 

• Wire capacitance/unit length ~ 1 

• RC delay/unit length (unrepeated) ~ S2 

• Die size (D) increases, so “long” wires increase by D 

• Unrepeated wire delay ~ S2D2,  repeated ~ D sqrt(S) 
Signals cannot cross the chip in one cycle. 

 



Moore's law 
Empirical observation and self-fulfilling prophesy: 

Circuit element count doubles every N months. (N ~18) 
 

• Technological explanation:  Features shrink, semiconductor dies grow. 

 

• Dennard scaling:  Gate delays decrease. Wires are relatively longer/slower. 
– Dennard scaling has not been perfect in practice and is coming to an end. 

 

• In the past, the focus has been making "conventional" processors faster. 
– Faster clocks 

– Clever architecture and implementation  instruction-level parallelism. 

– Clever architecture (speculation, predication, etc), HW/SW Prefetching, and massive caches 
ease the “memory wall” problem. 

• Problems:   

– Faster clocks --> more power. 

– Power scaling law for CMOS:   P = αCV2F,  but Fmax~ V  so P ~ F3 

• Where α is proportional to the avg. number of gates active per clock cycle. 

– Smaller transistors + long wires  either slow clock, or pipelined communication. 

– More power goes to overhead: cache, predictors, “Tomasulo”, clock, … 

– Big dies --> fewer dies/wafer, lower yields, higher costs 

– Aggregate effect -->  Expensive, power-hog processors on which some signals take 6 cycles 
to cross. 

 



The End of Dennard Scaling: Dark and Dim Silicon 

• Vdd Scaling issues 
– Initially, designers constrained by standards:  12V, 5V, 3.3V. 

– On-board power regulation now allows Vdd to be 1V or less. 

– This is getting uncomfortably close to threshold voltages. 

– Decreasing thresholds has rapidly increased leakage current/power. 

– Decreasing f allows operation with higher thresholds. 

• Gate Insulator issues 
– Thickness is now ~ 5 atoms  

• Useful work and duty cycles 
–  Bailey and Snyder (1988) observed that α was at most a few percent for processors.  

If α were much larger, chips would melt. 

–  Aggressive architectures have increased α to do bookkeeping, data movement, … 

• “Dark” and “dim” silicon refer to schemes to reduce α and/or f to reduce 
power. 
– Heterogeneous cores and purpose built modules w. power mangement. 

– Programmable logic and reconfigurable devices. 

  We can now build chips that cannot be run at their full design potential. 
 

 

 



“Dim silicon” adaptation in X64_64 

• Intel: On-chip control processor 
– “Turbo” modes throttle f when all cores are active. 

• Run power-efficient, low f, low V in highly parallel code regions. 

• Inefficient high f, high V in sequential regions. 

– Shut down cores 

– Automatic DVFS to keep within thermal budgets. 
• Aggressive turbo mode when one core is active. 

• Brief performance bursts when thermal headroom exists. 

– “Balanced” mode DVFS to trade FLOPS and Watts. 
• Reduce core frequency when code seems to be memory bound. 

• AMD:  
– Similar strategies 

– Additionally, A-series can attempt to balance CPU and GPU 
performance and power budgets. 
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Moore’s Law/Dennard Scaling for DRAM. 

• As more transistors were added to processor chips, they got 
a lot faster. 
– Dennard scaling for faster transistors. 

– Clever architectures and on-chip concurrency. 

• As more transistors were added to memory chips, they got a 
lot bigger. 
– Cleverness went into reliability, yield, … 

– Small transistors are fast, but weak (can’t drive long wires). 

– Little increase in on chip concurrency. 

– Very low Rent’s law (surface/volume ratio) exponent! 

Brown Bag Talk:  Scaling Laws and HPC 8 

Introduction Size Pins Cycle Time Bandwidth 

DDR 2000 2 GB 168 5 ns 3.2 MB/sec 

DDR2 2003 4 GB 184 3.75 ns 8.5 MB/sec 

DDR3 2007(2009) 16 GB 240 5 ns 12.8 MB/sec 

DDR4 2012(?) 25.6(?) MB/sec 



Other Trends: Pins and GPU Memory 



Little’s Law applied to Memory. 

• Classic law/lemma in queuing theory 
–  (mean # in system/queue) = (arrival rate) (mean residence time) 

• Communication (memory) restatement 
–     (concurrency) = (bandwidth) (latency) 

 To increase bandwidth without decreasing latency, you have 
to increase the concurrency of the system 
–   Wider channels to send more bits per operation. 

–   Overlapping, i.e., pipelined, operations. 

Bottleneck   bandwidth plateaus, queuing latency dominates. 



pChase 

• Developed by Pase and Eckl @IBM 

• Multi-threaded benchmark used to test memory throughput under 
carefully controlled degrees of concurrent accesses 

• Each thread executes a controllable number of ‘pointer-chasing’ 
operations –  a memory-reference chain 
–  Pointer to the next memory location is stored in the current location.   Grow 

and randomize chain to defeat cache, prefetch. 

–  Dereference pointers in k independent chains concurrently, then use them. 

• K=1 case measures memory latency. 

• Large-k bandwidths are comparable to STREAM measurements at 
“common” optimization levels.   

• Our Modifications 
–  Added wrapper scripts around pChase to iterate over different numbers of 

memory reference chains and threads 

–  Added affinity code to control thread and data placement 

• Available at http://pchase.org 



E5-2680 in “maxperf” mode. 
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Resource Centric Performance Reflection: 

RCRToolkit 

• Performance measurement and analysis tool that focuses on shared 
resources in a system 

– Information and analysis should help applications and system code 
introspectively, in real-time, to adapt to bottlenecks, power, thermal events. 

• RCRToolkit consists of 

– RCRblackboard 

– Several clients for the RCRblackboard 

• RCRblackboard 

– Shared memory region (or, currently Google protocol buffers resident in 
memory) for real time use by producers and consumers of node- and system- 
wide performance information 

– Information organized in a hierarchy that reflects hardware structure 

– Coordination managed by the RCRblackboard protocol – multiple regions, each 
owned by a single writer. 
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Core RCRblackboard Clients 

• RCRdaemon 
– Uses Linux MSR driver in conjunction with configuration information accessible 

through libpfm4 (and other sources) to access off-core HPM counters. 

– Off-core counters in PCI CONFIG space coming soon.  

– Can co-exist with tools using Linux PerfEvents using on-core counters. 

– Configuration file specifies which HPM events to monitor, as well as a set of derived 
measures (“meters”) computable with simple arithmetic. 

• RCRlogger and RCRviewer 
– Read RCRblackboard information and output a log for post-execution analysis 

– On-line monitoring. 

• MAESTRO thread scheduler 
– Adaptive, locality-aware scheduling of over-partitioned applications, e.g., OpenMP tasks, 

loops with guided self-scheduling. 

– Monitors shared resource usage and adapts scheduling during periods of high 
utilization 

– Writes scheduling decision information to RCRblackboard, including some source 
attribution at the level of OpenMP loops and tasks. 

 



Hot-wiring HPCToolkit to leverage RCRToolkit 

• Experimental extension to HPCToolkit to act as an RCRblackboard client 

• Goal:  combine third-person, system-wide performance measures  with 

“first-person” call stack profiling. 

• Accomplished by 

– Command line extension to specify events to split based on RCR predicates. 

– Modifying HPCToolkit’s event sampling code to examine RCRblackboard for 

existence of shared resource bottlenecks. 

– Monitoring whether the sampled event occurs when shared resource utilization 

exceeds threshold set in RCRdaemon configuration 

• Original HPCToolkit event is split into two sub-events that can be viewed 

using an unmodified HPCViewer 

 



Hot-wiring HPCToolkit (2) 

• RCR augmented HPCToolkit metrics  

– Extended command line argument to “hpcrun” command 

– “hpcrun” event specification string was extended by adding a suffix string, delimited 
by # and ^, which corresponds to a RCRToolkit derived system-wide metric with a 
boolean value 

– Example: If PAPI_L2_TCM is the base event and is passed as an extended 
specification with hpcrun, and if the RCRToolkit derived metric is a threshold variable 
corresponding to full utilization of a memory channel, we will have two HPCToolkit 
metrics – one for normal PAPI_L2_TCM events and other for PAPI_L2_TCM events 
that occurred during memory contention 

– Currently, user has a dictionary of mapping between contentious events and shared 
memory locations. (Symbolic specification via GPB “real soon now”) 

– Augmented metric appears with a “RCR-” prefix in HPCViewer, for example RCR-
PAPI_L2_TCM 

– Could go beyond simple predicates.   Multiple sub-events?  Integrate RCR metrics 
rather than just a simple histogram? 

 



Examples 

• Analyzed memory performance of three applications/benchmarks 

– Memory performance: significant source of bottlenecks on multi-core systems 

– Lattice QCD “chroma”, Lattice Boltzmann Magneto HydroDynamics (LBMHD), 

and Barcelona OpenMP FFT 

• Each run is simultaneously measured by 

– RCRToolkit  

– Modified HPCToolkit hot-wired with RCRToolkit 

• Two systems 

– Dell PowerEdge M910 test system (MMQ) 

– Two socket E5-2680 system 

 



Nehalem EX Uncore. 

• B-box has an In Memory Table (IMT) that tracks all in-flight memory block 

operations and ensures that they are all unique 

• Uncore counter, IMT_VALID_OCCUPANCY tracks number of unique entries 

in the IMT == number of concurrent memory operations in flight 

• RCRdaemon calculates IMT Average Occupancy = (count * 32 /cycles) 



Sandy Bridge E5-26xx 
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• Rich collection of uncore boxes. 
• LLC is split into 8 pieces, each behind a CBox 
• PMUs for CBoxes, Ubox, and PCU are accessible through MSR space. 
• All other PMUs are in the PCI CONFIG space. 
• LLC/Memory requests are queued in a per CBox TOR. 
• We measure energy (power) consumption and TOR occupancy. 



Validation and threshold selection. 

• Used the pChase benchmark code to generate controlled 

level of concurrent memory operations 

• Bandwidth is observed to increase with load up to a 

practical threshold after which requests are queued 

• Using pChase, determined that memory contention 

becomes severe when IMT Average Occupancy reaches 23, 

and saturates at about 27  

• Chose 23 as a threshold defining a memory controller 

bottleneck. 



pChase TOR Occupancy on SB 
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pChase Power on Sandy Bridge 2600 
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Evaluation: Lattice QCD “chroma” Application 

• Open-source C++ based software system from US SciDAC QCD 

initiative 

• “chroma” is based on the QDP++ library that implements data-parallel 

programming constructs for lattice field theory 

• Application runs used unmodified MPI build of Chroma version 3.7.3 and 

QDP++ version 1.35.1  

– Used ‘clover’ sample input from the FermiLab QCD benchmark suite 

• Ran on all 32 cores of MMQ 

– For runs using HPCToolkit, RCRdaemon was running with a threshold for 

Average IMT Occupancy set to 23 
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“chroma” Results: RCRToolkit  

Doing I/O 
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“chroma” Results: RCRToolkit  



27 

“chroma”: HPCToolkit hot-wired with RCRToolkit  



Chroma Power and L3 queue on SB. 
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Evaluation: LBMHD Benchmark 

• The LBMHD benchmark models homogeneous isotropic turbulence in 

dissipative magneto-hydrodynamics 

• LBMHD code was obtained from S. Williams at Lawrence Berkeley 

National Lab 

• Ran on all 32 cores of MMQ 

– For runs using HPCToolkit, RCRdaemon was running with a threshold for 

Average IMT Occupancy set to 23 
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LBMHD on Nehalem EX: RCRToolkit  
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LBMHD Results: RCRToolkit  
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LBMHD: HPCToolkit hot-wired with RCRToolkit  



Evaluation: FFT Benchmark 

• Benchmark from the Barcelona OpenMP Tasks Suite (BOTS) 

• FFT computes 1-dimensional FFT of a vector of n complex values using 

the Cooley-Turkey algorithm 

– Recursive algorithm that divides a DFT into smaller DFTs 

– Each division generates multiple OpenMP tasks 

– Version ran was compiled with ROSE source-to-source compiler and 

executed with the Qthreads runtime 

• Ran on all 32 cores of MMQ 

– For runs using RCRToolkit, RCRdaemon was running with a threshold for 

Average IMT Occupancy set to 23 
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FFT on Nehalem EX: RCRToolkit  
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FFT: HPCToolkit hot-wired with RCRToolkit  



FFT TOR Occupancy on SB 
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We know, from the MMQ 
results, that data is poorly 
balanced between 
memories.   Why is there 
an imbalance at the TOR? 



FFT Power on SB 
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