
© 2011 IBM Corporation T.J. Watson, IBM Research 

A Lightweight OpenMP Runtime  
 

-- OpenMP for Exascale Architectures -- 

Alexandre Eichenberger - Kevin O’Brien 

6/26/12 



© 2011 IBM Corporation 2 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Goals 
 Thread-rich computing environments are becoming more prevalent 

– more computing power, more threads 
– less memory relative to compute 

 There is parallelism, it comes in many forms 
– hybrid MPI - OpenMP parallelism 
– mixed mode OpenMP / Pthread parallelism 
– nested OpenMP parallelism 

 Have to exploit parallelism efficiently 
– providing ease of use for casual programmers 
– providing full control for power programmers 
– providing timing feedback 



© 2011 IBM Corporation 3 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Objectives Of Lightweight-OpenMP Runtime 
 Handle more threads 

– lower OpenMP overheads 
•  lower scalar overheads (Amdal’s law) 
•  better scaling of overheads (more threads) 

– develop new algorithms inside research runtime 

 Handle nested parallelism: more control with thread affinity 
– more user input on how to map computation to threads 

•  currently: no affinity support provided by user 
– proposed a new thread-affinity to OpenMP standard committee 
– contributed reference implementation in research runtime 

 Todo: Provide timing feedback  
– user want to know where is the time spent 
– feedback at little overheads 



© 2011 IBM Corporation 4 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Part 1: Handle more threads 
  Impact of overheads 

 Approach for near constant-time parallel-region creation 

 Results on BGQ 



© 2011 IBM Corporation 5 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Impact of Overhead in Prevalent Threading Model 
Programming Model 

 MPI 
– distributed process across/within nodes 
– explicit user-managed communication 

 Coarse-grain Parallel (OpenMP/Auto) 
– shared memory within nodes/cores 
– for outer parallel-loops 

 Fine-grain Parallel (OpenMP/Auto) 
– shared memory within cores/nodes 
– for inner parallel-loops 

Parallelism  
lots 

little 

Overheads 

low impact 

high impact 

Im
pact of O

penM
P 



© 2011 IBM Corporation 6 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Basic OpenMP Operation: Parallel Region 

avail:  
tid:  

work:  

state:  

parallel work  

sequential work  

sequential work  

sequential overheads  

parallel overheads  

Beginning of parallel region 
•  recruits threads 
•  initializes participating threads 

End of parallel region 
•  barrier & cleanup 

overhead  useful work  

master thread 

worker threads 
t0   t1   t2   t3   t4 



© 2011 IBM Corporation 7 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Source of Overheads, Due to OpenMP Standard 
Action  Time line  Data used 

t0   t1   t2   t3   t4 t0  t1  t2  t3  t4 

0 1 1 0 1 1. find 3 avail threads  avail:  
0 1 2 3 2. assign thread IDs  tid:  

5. init. thread state  state:  fls fls fls fls 

4. signal ready  

parallel work  

sequential work  

sequential work  useful work  

6. barrier  
7. cleanup  

sequential overheads  

parallel overheads  

beginning region 

end region 

3. assign work  work:  
loopInfo fct state 

work descriptors: 



© 2011 IBM Corporation 8 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Systematic re-design to lower overheads 

 

Optimized OpenMP Runtime Design 

t0    t1   t2    t3   t4 

find avail threads  
assign IDs  

assign work  

initialize state  

signal ready  

parallel work  

barrier  

cleanup  
 Use hardware support 

– atomic instructions (atomic increment / xor) 

 Extremely compact state 
– minimize initialization/cleanup 

 

 Eliminate sequential overhead 
– reuse previous thread allocations 
– in practice, near 100% hit 
 



© 2011 IBM Corporation 9 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Optimization Guiding Principles 
 Cache configurations to eliminate computation & communication 

– reuse as much as possible when nothing has changed  

 Minimum locking 
– one lock for protecting thread allocation data structure 
– locked only on thread recruiting / freeing 
– rest use atomic operations 

 Use global state sparingly 
– work descriptor is only used for parallel region 
– most other OpenMP constructs use no work descriptors 

 Allocate state statically, initialize mostly statically 
– barriers use counters initialized when initializing OpenMP 
– some local state is only initialized on first use 



© 2011 IBM Corporation 10 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

 When freeing workers 
– leave workers in reserved state (A: end t8) 

 When recruiting workers 
– avoid stealing workers that were reserved by others (B: start t0) 
– aim at reusing workers that were previously reserved by this master (C: start t4) 

Example: Caching Worker Configurations 
Initial state 

0 

4 

8 

4 
5 
6 
7 
8 
9 
10 
11 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 

0 

12 
13 
14 
15 

12 

End parallel for t4, t8 

0 

0 

4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 

12 
13 
14 
15 

12 

8 

12 
13 
14 
15 

0 

12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 

8 

0 

0 
1 
2 
3 

4 

Start parallel for t0, t4 

(A) 

(B) 

(C) 

12 
13 
14 
15 

0 

12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 

8 

0 

0 
1 
2 
3 

4 

4 
5 
6 
7 



© 2011 IBM Corporation 11 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

OpenMP Micro-Benchmark (EPCC) Results 
 Contributions of individual optimizations 

t0    t1   t2    t3   t4 

find avail threads  
assign IDs  
assign work  

initialize state  

signal ready  

parallel work  

barrier  

cleanup  



© 2011 IBM Corporation 12 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Overhead Scaling for Parallel Region (ECPP) 
 Nearly constant overhead over wide range of thread counts 

LOMP is an experimental runtime that implements a subset of all OpenMP 
functionality. Performance will be impacted until full functionality is provided 



© 2011 IBM Corporation 13 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Observations 
 Creating a parallel region with 4 to 64 threads 

– overhead are now reduced to below 2K cycles 
– preliminary numbers, will change as we support full OpenMP 

 While we have reduced overheads by 4x – 10x 
– remaining overheads are due to the OpenMP standard 
– others are due to necessary locks / barriers / msyncs 
– compiler optimization can further reduce overheads in some cases 

 Barriers becoming the dominant factor at higher thread counts 



© 2011 IBM Corporation 14 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Part 2: Efficient Nested Parallelism 
 Examples of requests that are not currently possible 

– get threads on separate cores to get more L1 cache 
– get threads collocated on same core to maximize cache reuse 

 Current runtimes have a fixed policy 
– runtime tries to even out load balance across the machine 
– this works well for single level of parallelism,  
– not as well for nested parallelism 

 Want to allow users to specify where to get threads 
– broad policies that cover most cases 

 Want to allow users to specify where threads are allowed to migrate 
– for load balancing purpose 



© 2011 IBM Corporation 15 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

OpenMP Affinity Proposal 
 Define the concept of an OpenMP Place 

– a set of one or more logical processors on which OpenMP-threads execute 
– OpenMP-threads may migrate within one place 

 Let the user specify its own set of places  
– by default, the system defines its own list of places 
– in MPI hybrid mode, the “mpi-run” script would defines the set of places 

 Let the user specify how to recruit threads for OpenMP parallel  
– MASTER: put threads in same place as master 
– CLOSE: put threads close to master 

•  reduce false sharing, distribute among places 
– SPREAD: spread threads across the machine 

•  reduce overheads of threads sharing the same core 
•  optimize memory bandwidth by exploiting cores/sockets 



© 2011 IBM Corporation 16 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

How to use Place Lists 
 Consider a system with 2 chips, 4 cores, and 8 hardware-threads 

– One place per hardware-thread 
•  OMP_PLACES=hwthread 
•  OMP_PLACES=(0),(1),(2),…(15) 

– One place per core, including both hardware-threads 
•  OMP_PLACES=core 
•  OMP_PLACES=(0,1),(2,3),(4,5)…(14,15) 

– One place per chip, excluding first hardware-thread 
•  OMP_PLACES=(1,2,…,7),(9,10,11,..15) 

chip 0 
 
 
 

core 0 
 
 t0 t1 

core 1 
 
 t2 t3 

core 2 
 
 t4 t5 

core 3 
 
 t6 t7 

chip 1 
 
 
 

core 4 
 
 t8 t9 

core 5 
 
 t10 t11 

core 6 
 
 t12 t13 

core 7 
 
 t14 t15 



© 2011 IBM Corporation 17 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Compact selects OpenMP threads in the same place as the master  
– consider the next place(s) when master place is full 

 Example with OMP_PLACES=hwthread 

– close 2* 

– close 4 

– close 4 

CLOSE Policy 

* technically “omp parallel num_threads(2) affinity(close)”           master         worker 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 

chip 0 
 
 
 

core 0 
 
 t0 t1 

core 1 
 
 t2 t3 

core 2 
 
 t4 t5 

core 3 
 
 t6 t7 

chip 1 
 
 
 

core 4 
 
 t8 t9 

core 5 
 
 t10 t11 

core 6 
 
 t12 t13 

core 7 
 
 t14 t15 



© 2011 IBM Corporation 18 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

 Spread OpenMP threads as evenly as possible among places 

 Example with OMP_PLACES=hwthread 

– spread 2* 

– spread 4 

– spread 8 
 

SPREAD Policy 

chip 0 
 
 
 

core 0 
 
 t0 t1 

core 1 
 
 t2 t3 

core 2 
 
 t4 t5 

core 3 
 
 t6 t7 

chip 1 
 
 
 

core 4 
 
 t8 t9 

core 5 
 
 t10 t11 

core 6 
 
 t12 t13 

core 7 
 
 t14 t15 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 

* technically “omp parallel num_threads(2) affinity(spread)”             master         worker 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 



© 2011 IBM Corporation 19 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

 Spread also implicitly partition the machine 
– so that nested parallel-regions get threads only from its subset of the machine 

 Example: spread with nested, compact, parallel-regions 

– initial 

– spread 4 

– close 4 

Spread Policy Partition the Machine 

chip 0 
 
 
 

core 0 
 
 t0 t1 

core 1 
 
 t2 t3 

core 2 
 
 t4 t5 

core 3 
 
 t6 t7 

chip 1 
 
 
 

core 4 
 
 t8 t9 

core 5 
 
 t10 t11 

core 6 
 
 t12 t13 

core 7 
 
 t14 t15 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 

partition 



© 2011 IBM Corporation 20 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 

Observations 
 Give the user more fine-grain control 

– which hardware thread / core / chip to use 
– which thread to select for a given parallel region 

•  e.g. spread vs. compact 
– where threads are allowed to migrate (within a place) 

 Ongoing work 
– implemented in our research OpenMP runtime 
– currently under review with the OpenMP Standard Language Committee 



© 2011 IBM Corporation 

Part 3: Providing Timing Info 
 Possible approaches 

– callbacks  
– statistical sampling (requires interrupt support) 
– embedded timing (using low overhead hardware timers) 

 Experimented with second approach 
– approximate overheads: 100 cycles per OpenMP constructs 
– (for ref: 64-thread barrier 800-1000 cycles, parallel region 1800-2000 cycles) 

 Questions: 
– what is needed by users 
– what is needed by tool developers 
– what can info can be provided cheaply 

21 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 



© 2011 IBM Corporation 

Timing Info: Cost Evaluation 
 Timing is relatively cheap on POWER 

– get a local timer (register move) 
– save difference of 2 timer values (one store) 

 Saving a current state (idle-barrier/idle-lock) 
– one store per transition 

 Callbacks 
– load value of “enabled/disabled”, one branch 
– BUT having a call has performance impact on optimized runtime 

•  in optimized runtime, everything is inlined (except call outlined functions) 
•  calls force caller-saved register back into memory (potentially 10+ load/

store) 
•  have seen overhead in 100+ cycles just for one additional function call 

– cheaper if are located just before/after outlined function calls 

22 IBM - OpenMP for Exascale - Alexandre Eichenberger 26 June 2012 


