Problem: Dimensions of Scale

• Application space/concurrency
 o size of input data
 o size of output data
 o # of processes/cores/GPUs etc.
 o execution time (also a factor in other dimensions)
 o environmental and resource issues

• Application code
 o binary size
 o mixed-language or mixed-paradigm
 o # of libraries
 o # of functions / symbols / templated classes
 o # of instructions / floating-point operations

• Tool space/concurrency
 o analysis workload
 o profiling data/output
 o presentation/visualization
Approaches to Tool Development

• Traditional paradigm
 o Develop for and test at small scale
 o Then scale up to large scale

• New paradigm
 o Develop for and test at large scale
 o Keep all scaling dimensions in mind
Techniques

• Processing collection data
 o "in-situ"/online filtering and analysis of profiling data
 ▪ temperature monitoring example
 ▪ feedback to tool for focused collection
 ▪ global coordination points - refine collection process
 o look for patterns (local vs. global)
 o equivalence classes for profiling output

• Continuous monitoring
 o feedback to tool front-end or auto-tuning system
 o selecting interesting areas / areas of stress

• Environmental infrastructure integration
 o collaborate with vendors (example - CDTI)
Possible Solutions

• Frameworks
 o can provide deployment environment at scale
 o integration from other environmental resources (monitoring)
 o target scenarios or scale dimension metrics

• Virtualization/emulation for scaling tests
 o must have models for all affecting variables (FS contention, etc.)
 o can be hard to know without at-scale testing
 o chicken-and-egg problem

• Running on big-iron
 o phased approach to getting to this point