CScADS June 29, 2012
Performance Tools for Extreme-scale Computing

Out-briefing:
Variable Clock Rates/HWC Event Validation

Marty Itzkowitz, Dave Levinthal, Dan Terpstra, Stéphane Eranian, Vince Weaver, Robert Richter, Dave Goodell
Variable Clock Rate I

• Problem is here to stay, and we need to cope with it.
• Intel's PTU recorded a timestamp with each event
 – For two successive samples on a core:
 • Get tick counts of variable clock & TSC counter (reference clock)
 • Ratio gets frequency
• One TSC per core; each hyperthread gets its own TSC
 – Ambiguity about TSC correlation across cores
 – Especially in C-states in older chips
 – Newer chips may or may not be better in this respect
Variable Clock Rate, II

- Both Intel & AMD have a really-fixed frequency counter
 - Independent of turbo mode and frequency scaling
- PAPI intends to provide ratio:
 - Reference (fixed) clock
 - Variable pipeline clock, as seen by the process
- Question -- what really matters?
 - Is it amount of work done in that number of cycles?
 - Or is it elapsed real time?
Variable Clock Rate, III

• One methodology
 – Use both fixed (MPERF) and variable (APERF) counters
 – Record both in signal handler
 – Use them to compute instantaneous clock

• On Intel, Bit 38, MSR1A0 (probably) controls turbo mode
 – AMD has similar technique
 – Alas, no such hook for frequency scaling
 • Only doable in BIOS at boot time
HWC Event Validation, I

• Dave Levinthal's Law:
 – "Open-ended, never-ending pain -- the the sad reality of it all"

• Need well-defined set of computational kernels
 – Predict event counts, then measure for each chip
 – Gooda has small set of kernels, available under Apache license
 – Dave Levinthal would welcome additional kernels
 • As long as they can be under same license.

• Validation across hyperthreading is even more difficult
 – Hyperthreads interfere with each other, in ways not well-understood
 – Cross-pollution of counts, possibly due to HW race conditions
HWC Event Validation, II

• DL's Historical observation:
 – Intel tock (new architecture) chips tend to have problems
 – Intel tick often fix them
 – Westmere seems to have best coverage of any processor

• Discussion was mostly on x86; issues are generic
 – Apply to all architectures, ARM, Power, SPARC...
 – Same issues for HW counters on GPUs
HWC Event Validation, III

- It would be good to organize effort to collect large apps
 - Calibrate counting rates for both 1 and 2 threads per-core
- How wide is the interest in doing this?
 - Is code.google.com a reasonable place to manage it?