Indications in black = Optional elements

CScADS Workshop on Autotuning for
’ Petascale Systems

Auto-tuning Compilers

Kevin O’Brien
IBM Watson Research Center

© 2008 IBM Corporation

pre
clie
in

|Indications in black = Optional elements |

Propositions/Questions Addressed

U Propositions | am supporting

» Proposition: The focus on specialized tuning systems is too narrow, and so
only compilers, which apply most broadly, are the most sensible investment.

» Proposition: Runtime optimization will catch opportunities for improvement
that neither a compiler nor a neither an autotuned library can.

U Propositions | disagree with

» Proposition: Self-tuned libraries will always outperform compiler- generated
code.

© 2008 IBM Corporation

Optional slide number:

|Indications in black = Optional elements |

Main Themes

U We need compilers to fully exploit the potential of autotuning
> Libraries don’t cover the full design space of programs
= if they did, we wouldn’t be here talking about this

» Programs are much more than a structured composition of calls to standard
libraries

» Compilers have a detailed view of the specific application code
= compilers running at link-time can do whole program analysis
» Deficiency in compiler applicability is the limitation to static analysis
= partial (albeit unsatisfactory) resolution is profile directed feedback
L We really need a combination of compilers and run-time monitoring
» Traditional Compiler strength in offline (static) analysis
» Profile that tracks actual execution
= recognition of phase changes

= always monitoring, need smart ways to make the cost of instrumentation
vanishingly small (compared to speed-ups)

» Nimble and flexible dynamic re-adaptation of code
= Can be based on offline pre-planning
= Can exploit underutilized threads to asynchronously adapt program

I © 2008 IBM Corporation

Optional slide number:

|Indications in black = Optional elements |

A Digression: The Cell Processor
L Cell Architecture (CBEA)

U Cell Programming models

QXL Compiler for Cell

© 2008 IBM Corporation

Optional slide number:

Optional elements

| Indications in black

Ine

Cell Broadband Eng

=
S
=
[
o]
a
2
S
(&)
=
o
©
o
S
I
(@]

Optional slide number:

| Auto-tuing Workshop

Cell Programming

Partition application
into PPE and SPE
portions

Compile PPE and SPE
portions separately

Code streaming data
portions for MFC

. —>
Parallelize across « L1 PXU

multiple SPEs ycle 16Bicycle
FlexlO™

Exploit SIMD features 64-bit Power Architecture with VMX

|Auto—tuning Workshop

Compilation Model

SPE
Source

SPE
Source

PPE
Source

JS”dUJOC) pua)oeg 3dd

%2
0
m
vy
)
Q
Q
)
>
o
@)
o
3
.
o)
-

SPE
Object

SPE

Object

SPE
_ibraries

J8ppaquq 3d4S

PPE
Object

SPE
_ibraries

PPE
| ibraries

|Auto—tuning Workshop

Programmability is the biggest problem

= Complex systems have potential for high performance
—very few expert programmers
— current tools require high level of expertise

In the late ‘50s, the switch from assembler to HLLs
(FORTRAN) was enabled by the development of
compilers

Today, we are in a very similar position to the pre-
FORTRAN era

— explicit parallel/SIMD/DMA

— need the equivalent new technology to get back on
track

= New languages and libraries like CUDA, ALF/DACS may
help mainly the expert programmers

— need languages that express high-level intent, not
. qetails of implementation

|Auto—tuning Workshop

OpenMP Compiler for Cell

A A 4

+ Qutline parallel region

« Parallel region runs on
« Code overlay 9

PPE/SPEs
- Data/task parallelism
« Runtime scheduling

+ Single source code

* C/C++/Fortran .
) Software cache
* OpenMP programming « Direct buffering

model - Auto SIMD

/ N /

|Auto—tuning Workshop

Software Cache - Data Structure

0-way 1-way

tag
base

dirty_bits

* 4-way set associative

* TAG size 16K (128 x 4 x 32B)
« DATA size 64K (512 x 128B)
» SIMD for tag comparison

» Cache lookup inlined by TOBEY, ~16 cycles

10 Cell OpenMP Compiler

|IBM China Research Lab

Problem Statements

= Coherence problems

— It is possible to have two copies of a variable in local
memory at the same time, one in software cache and the
other in direct buffer

m software cache space
Glo | ory Loc'ﬁory

direct buffer space

SPE

11 Cell OpenMP Compiler | - 2008-4-2 © iBM Corpor

|IBM China Research Lab

Solutions

for (ii=0; ii<N; ii+=bf) {
n = min(ii+bf, N);
DMA get Alii:n] to A’[];
= Separate transfers for (i=ii: i<n: i+4) {
— A variable either goes to software Rdaché! * >
or direct buffer DMA put B[] to Blii:n];
— No redundant copy, no coherence

—Whole program analysis

= Hybrid transfers
— A variable goes to both software cache and direct buffer
— Maintain two copies, make the values in sync

— Compiler analysis
* No cache access within the tiled loop
- Make sure the value sync only happens at the loop entry & exit

— Runtime check

- For read buffers, update the value from software cache after DMA get
- For write buffers, update software cache after DMA write

12 |Ce|l OpenMP Compiler 2008-4-2

|Indications in black = Optional elements |

Multi-dimensional problem

U Time of application
> “Compile time”
» “Execution time”

= both of these concepts get stretched (later)
L Range of potential targets

» memory system
» processor pipeline
» parallelism

» choice of machine organization or ISA
L Aspects of the hardware that influence performance

> number and type of execution threads

» cache configuration

> ...
U Aspects of application behavior that affect performance

»> phase changes

© 2008 IBM Corporation

Optional slide number:

|Indications in black = Optional elements |

Time of Application

U Compile Time

>
>

>

Y VYV

traditionally offline, can take a lot of time

mainly focused on the execution environments behavior, as it intersects the
particular application

must be aware of the target execution environment (cross compiler issue)
cannot take account of execution behavior except through “training runs”

compiler can build experiments (constructed from the source) to determine
“good” values for parameters etc

= example: tile sizes in the polyhedral model
= example: unrolling factors
has some similarity to the way that autotuning of libraries is done

© 2008 IBM Corporation

Optional slide number:

|Indications in black = Optional elements |

Time of Application

1 Execution Time

» traditionally online, usually constrained by requirement to speed up, rather
than slow down the application

= Java compilers like Testarossa(lIBM) and HotSpot(SUN)

> has access to profile data from the current execution of the program
= can be aware of phase changes
= much more data can be collected than in conventional PDF

= interaction between compiler and monitoring system can pose questions
(experiments) that reveal more information about interesting program
behavior

> in a petascale (massively parallel) system, under-utilized execution contexts
can be pressed into service of the compiler

= allows a type of “offline” dynamic compilation

© 2008 IBM Corporation

Optional slide number:

|Indications in black = Optional elements |

Range of potential targets

L memory system

» tiling parameters and unroll factors
delinquent load amelioration
complex prefetch patterns
dynamic control of stream hardware engines
remapping data-structures

= whole program analysis, remapping dynamically for phase changes
U parallelism

» speculative execution
= based on profile data, radically optimized code can be chosen
= need to be able to monitor and back-out

» dynamic (in)dependance discovery

» dynamic re-scheduling

YV V V V

» choosing between alternative levels of parallelism
Utrace optimization

» dynamic hyperblock formation
= online scheduling of hyperblocks

> reducing branch mispredicts
16 I © 2008 IBM Corporation

Optional slide number:

|Indications in black = Optional elements |

Range of potential targets

U choice of machine organization or ISA
» accelerators (either the same or different ISA to core)
= source fragments may be compiled to multiple targets
or to the same target but with different pipeline/frequency
= choose which version to run
depends on execution characteristics of the application
= may require management of code and data transfers (eg Cell SPU)
= need to monitor and evaluate these decisions

U processor pipeline
» codes may be statically compiled to a different model

© 2008 IBM Corporation

Optional slide number:

|Indications in black = Optional elements |

Aspects of the hardware that influence performance

U number and type of execution threads
» number of cores/SMT threads
» presence of accelerators
= same ISA but different performance
= different ISA
= SIMD units (and their alignment requirements)

» floating point compatibility between processors
U cache configuration

> level of sharing between threads, cores, chips, nodes, ...

» ... and the bandwidths, latencies and geometries
U speculation support in hardware

> TLS, TM
UInterconnect topology

» support for distributed memory
» DMA engines etc
= are they programmable?

© 2008 IBM Corporation

Optional slide number:

|Indications in black = Optional elements |

Aspects of application behavior that affect performance

U Execution path

» iteration counts (profitability of SIMDization, parallelization)
» hyperblock formation
» branch penalties
= not all processors have (good) branch prediction hardware

(also a software/hardware tradeoff)
U phase changes

» can we recognize them?
= fast enough?

= can we react effectively?
L dynamic dependance structure

» for unsolvable dependances, are there patterns?

© 2008 IBM Corporation

Optional slide number:

|Indications in black = Optional elements |

Hardware Support

L Do we need it?
L What should it look like?

© 2008 IBM Corporation

Optional slide number:

