
Compiler-based Autotuning of
MPI  

Martin Swany

Application Transformation
•  Parallel application performance depends on

efficient data movement
•  Programming methodologies for good message-

passing performance can be difficult to program
and maintain
–  Asynchronous and one-sided messaging
–  Specifics of network interfaces change

•  This work focuses on automatic program
transformations to reduce the overhead of
communication (and programmer effort)

•  This approach will be critical for petascale
systems!

Autotuning Position
•  Question: Suppose all layers of the

 software stack (e.g., OS, middleware,
 MPI, libraries, apps) are "autotuned." Will
 we need to integrate these multiple
 layers, and if so, how?

•  Position: There are certainly interactions
 between autotuned libraries. Compute
 kernels and message-passing code
 should be tuned together.

Overlapping Computation and
Communication

Overlapping Details
•  Minimize overhead of data movement by

overlapping it with useful work
•  An well-known idea

•  What does it mean for parallel application
structure?
•  Post a send as soon as the data is ready (without

copying, if possible)
•  Do useful work
•  Check status after completion (with minimal polling,

sleeping or busy-waiting)
•  Difficult to optimize, difficult to maintain

•  Not portable across platforms

Basic Approaches
•  Compiler-based application transformation

–  Previously only source-to-source, now to binary
•  Transform MPI communication

–  Collectives → Point-to-point
–  Blocking → Non-blocking
–  Non-blocking → One-sided
–  Send fission and fusion

•  Strip-mining

•  Separate costs of communication
– Hoist
– Overlap

Overlapping Transformation -
 Simple Example

-  Automatic System for Parallel AppLication
 Transformation

ASPhALT

Transformer Structure

Evaluation of Automatic Transformation -
Synthetic Kernel

interconnect:Ammasso, NP:16, size:1440x1440x48x16 Bytes

Evaluation of Automatic Transformation -
Synthetic Kernel

interconnect:Myrinet-MX, NP:48, size:1440x1440x48x16 Bytes

interconnect:SCI from Dolphin, NP:8, size:1440x1440x48x16 Bytes

Evaluation of Automatic Transformation -
Synthetic Kernel

Evaluation of Automatic Transformation -
Application “visco”

interconnect:Myrinet-MX, NP:48, size:9216x2305x48x16 Bytes

Evaluation of Automatic Transformation -
Application “visco”

interconnect:Myrinet-GM, NP:24, size:9216x2305x48x16 Bytes

Autotuning of Tile size
•  The tile size is an obvious choice for autotuning

–  Though not covered here, another parameter we
 have investigated is how many tiles should be
 outstanding in the pipeline

•  These results were for MPI_ALLTOALL but other work
 has considered single send/recv pairs and scatter
/gather
–  Matching done with pragma

•  Clearly there is an interaction between our
 transformation and the loop transformations performed
 for compute kernels

•  Weʼre limiting ourselves if we have an optimized
 compute phase followed by an optimized
 communication phase!

ASPhALT and Gravel

Gravel – An MPI Companion
Library

•  Decompose messaging components
–  Memory registration (for DMA)
–  Message metadata, or header

•  Rendezvous or handshake if no message buffering
–  Message data

•  Implement a lightweight system library atop
uDAPL from OpenFabrics
–  Possibly still too high level

•  Build up abstractions that facilitate replacement
of performance-critical MPI calls
–  Not a replacement for MPI

Gravel
•  Explicit memory registration

– Rather than custom memory allocator
•  No message buffering

– No unexpected message queue
– No “eager” mode

•  Message metadata and completion
indication also use RDMA to specific
locations in peer memory called “ledgers”
– Can enable true overlap

Gravel Rendezvous Protocols

Open64 Implementation

Gravel Performance

Gravel Performance - 2

•  Automatic Tuning of MPI Software
–  Martin Swany, Lori Pollock, U. Delaware
–  Jack Dongarra, George Bosilca, U. Tennessee

•  For real codes, the MPI library must be aware
that MPI calls have been removed
–  Only performance critical loops will likely be

optimized
•  Initial work: Optimized packing routines
•  Next, make OpenMPI more “inline-friendly”

Autotuning
•  We need to interleave computation and communication and that

 means co-tuning
•  Models are difficult as the maximum bandwidth and minimum

 latency may not be the key factors when considering whole
 application network overhead -- runtime is the final metric!

–  Weʼve mentioned reduction in overall communication, but thatʼs not the only
 possible solution either

•  One of the key arguments for autotuning in this space is that there
 are many factors in this space and analytical models are
 intractable
–  In addition, when this tuning is combined with compute library tuning, it

 gets worse
•  Considering pipelined message-passing is key to performance

 improvement
–  We donʼt want separately optimized phases
–  The need to interleave and compose has been mentioned repeatedly

Compiler Support
•  Weʼre using Open64

–  Some have talked about everyone rolling their own
 transformation infrastructure

•  The interaction with the system for loop
 transformation suggests that a tight integration
 is necessary
–  Subsequent phases shouldnʼt undo what weʼve done

•  Source to source is good for portability but might
 leave opportunities on the table
–  Weʼd like to expand the ledger notion and potentially

 eliminate messaging call sites altogether

Acknowledgements
•  UD Students

– Anthony Danalis, Andrew Gearhart, Aaron
Brown, Magnus Johnsson, Ben Perry, Omer
Arap
•  (alumni: Lewis Fishgold, Kiyong Kim)

•  co-PI: Lori Pollock
•  NSF CSR Program

– CNS-0509170
– CNS-0720712

