
Automatic tuning for
petascale systems
Keith Cooper (Rice)

Richard Vuduc (Georgia Tech)

Kathy Yelick (UCB/LBNL), Jack Dongarra (UTK)

Center for Scalable Application Development Software

1

Proverb

A movement
begins as a vision,
runs as a business, and
ends as a racket.

Question: In what stage are we?

2

Poly-algorithms: John R. Rice (Purdue)

(1969) “A polyalgorithm for the automatic solution of nonlinear equations”

(1976) “The algorithm selection problem”

Profiling and feedback-directed compilation

(1971) Knuth, “An empirical study of FORTRAN programs”

(1982) Graham, et al., gprof

(1987) Massalin, “superoptimizer”

(1991) Chang, Mahlke, Hwu: “Using profile information to assist classic code
optimizations”

Code generation from high-level representations

(1989) J. Johnson, R.W. Johnson, D. Rodriguez, R. Tolimieri: “A methodology for
designing, modifying, and implementing Fourier Transform algorithms on various
architectures.”

(1992) M. Covell, C. Myers, A. Oppenheim: “Computer-aided algorithm design and
arrangement” (1992)

“Automatic tuning” – Early seedlings

3

Identify + generate a space of implementations

Search space to find “best,” using models + experiments

A notion of autotuning:

m0

n0

k0 = 1

Mflop/s

Source: PHiPAC Project at UC Berkeley (1997)

Platform: Sun Ultra IIi

16 double regs

667 Mflop/s peak

Unrolled, pipelined inner-
kernel

Sun cc v5.0 compiler

4

Identify + generate a space of implementations

“Identify” – What goes into the space?

“Generate” – IRs? Infrastructures?

How much is automatable? What is composable?

Search space to find “best,” using models + experiments

Static vs. dynamic?

Limits of models? Composability?

How much and what to measure?

What is “best?” (Metrics of success?)

A notion of autotuning:

5

CScADS Goals

Conduct research leading to software tools
and systems that help apps scale to petascale
and beyond

Catalyze activities in computer science

Enable interactions among vendors, developers

Sponsor workshops, create “visions”

Foster development of new software through
support of common software
infrastructures and standards

6

CScADS Participants

Funded by DOE SciDAC Program

Rice U. (lead): Mellor-Crummey & Cooper

Argonne: Beckman (site dir.), Gropp, Lusk

Berkeley: Yelick

U. Tenn. Knoxville: Dongarra

U. Wisconsin: Miller

Acknowledgements: Staff at Rice (Darnell Price),
ANL (Lori Swift), Snowbird (Kelly Wilkins)

7

Format

“Meeting of minds”

Architects, compiler writers, library developers

Industry, labs, academia

Discussion and debate

Topic questions, but make up your own

No holds barred – push buttons!

Community building

Day 1: “Guests,” industry, libraries

Day 2, 3 (half): Compilers, libraries, run-time

8

Example: DARPA AACE

“Architecture-Aware Compiler Environment”

Build a self-assembling, self-tuning compiler that
generates code with peak performance in zero-
compilation time on any architecture, including
one “it” has never seen before

Proposition: Compilers will never do this.

9

Today’s autotuning work does/doesn’t address the challenges of
petascale.

How do we measure success for tuning? Performance?
Productivity?

What architectures/platforms should we target?

“Parameter tuning” is the wrong focus for our area, as it suggests
only incremental improvements.

Self-tuned libraries will always outperform compiler-generated
code.

What improvements should we expect from autotuning? From
compilers? libraries?

Simple performance models (e.g., cache-oblivious, simple cores)
will be the right models in the future, obviating “search.”

Traditional boundaries between apps, libs, compilers, and OSes are
too rigid.

What issues are we as a community ignoring?

Common infrastructures?

10

Today’s autotuning work does/doesn’t address the challenges of
petascale.

How do we measure success for tuning? Performance?
Productivity?

What architectures/platforms should we target?

“Parameter tuning” is the wrong focus for our area, as it suggests
only incremental improvements.

Self-tuned libraries will always outperform compiler-generated
code.

What improvements should we expect from autotuning? From
compilers? libraries?

Simple performance models (e.g., cache-oblivious, simple cores)
will be the right models in the future, obviating “search.”

Traditional boundaries between apps, libs, compilers, and OSes are
too rigid.

What issues are we as a community ignoring?

Common infrastructures?

11

Many recent “autotuning” meetings

SIAM Parallel Processing ’08 special sessions

DOE High Perf. Comp. Sci. Week
http://www.hpcsw.org/presentations/workshops/autotuning/

iWAPT (‘06–’08), in Japan

Others?

Who is not here?

12

http://www.hpcsw.org/presentations/workshops/autotuning/
http://www.hpcsw.org/presentations/workshops/autotuning/

