Center for Scalable Application Development Software

Automatic tuning for
pDetascale systems

Keith Cooper (Rice)
Richard Vuduc (Georgia Tech)

Kathy Yelick (UCB/LBNL), Jack Dongarra (UTK) - Office of
w4 Science

U.S. DEPARTMENT OF ENERGY

Provero

A movement

begins as a vision,

runs as a business, and
ends as a racket.

Question: In what stage are we!

“Automatic tuning” - Early seedlings

» Poly-algorithms: John R. Rice (Purdue)
> (1969) “A polyalgorithm for the automatic solution of nonlinear equations”
» (1976) “The algorithm selection problem”
> Profiling and feedback-directed compilation
» (1971) Knuth,“An empirical study of FORTRAN programs”
> (1982) Graham, et al., gprof

> (1987) Massalin, “superoptimizer”

> (1991) Chang, Mahlke, Hwu:“Using profile information to assist classic code
optimizations”

» Code generation from high-level representations

> (1989) J. Johnson, R.W. Johnson, D. Rodriguez, R. Tolimieri:“A methodology for
designing, modifying, and implementing Fourier Transform algorithms on various
architectures.”

> (1992) M. Covell, C. Myers, A. Oppenheim:“Computer-aided algorithm design and
arrangement” (1992)

A notion of autotuning:

» Identify + generate a space of implementations

> Search space to find “best,” using models + experiments

k=1

L me

1o

== Platform: Sun Ultra lli
== 16 double regs
== 0667 Mflop/s peak

== Unrolled, pipelined inner-
kernel

== Sun cc vb5.0 compiler

2 4

Source: PHIPAC Project at UC Berkeley (1997)

10 12

Mflop/s

600

550

500

-1450

-400

4350

+4300

250

200

150

100

14 16

A notion of autotuning:

> |dentify + generate a space of implementations
> “Identify” —What goes into the space?
» “Generate” — IRs? Infrastructures?

» How much is automatable? What is composable!?

» Search space to find “best,” using models + experiments
» Static vs. dynamic?
» Limits of models! Composability?

» How much and what to measure!?

» What is “best?”’ (Metrics of success?)

CScADS Goals

» Conduct research leading to software tools
and systems that help apps scale to petascale
and beyond

» Catalyze activities in computer science
» Enable interactions among vendors, developers
» Sponsor workshops, create “visions”

» Foster development of new software through
support of common software
infrastructures and standards

CScADS Participants

» Funded by DOE SciDAC Program

» Rice U. (lead): Mellor-Crummey & Cooper
» Argonne: Beckman (site dir.), Gropp, Lusk
> Berkeley: Yelick

» U.Tenn. Knoxville: Dongarra

» U.Wisconsin: Miller

» Acknowledgements: Staff at Rice (Darnell Price),
ANL (Lori Swift), Snowbird (Kelly Wilkins)

Format

> “Meeting of minds”
Architects, compiler writers, library developers
Industry, labs, academia

» Discussion and debate
Topic questions, but make up your own
No holds barred - push buttons!
Community building

» Day |:“Guests,” industry, libraries

» Day 2, 3 (half): Compilers, libraries, run-time

Example: DARPA AACE

> “Architecture-Aware Compiler Environment”

» Build a self-assembling, self-tuning compiler that
generates code with peak performance in zero-
compilation time on any architecture, including
one “it” has never seen before

» Proposition: Compilers will never do this.

Today’s autotuning work does/doesn’t address the challenges of
petascale.

How do we measure success for tuning?! Performance?
Productivity!?

What architectures/platforms should we target?

“Parameter tuning’ is the wrong focus for our area, as it suggests
only incremental improvements.

Self-tuned libraries will always outperform compiler-generated
code.

What improvements should we expect from autotuning? From
compilers? libraries?

Simple performance models (e.g., cache-oblivious, simple cores)
will be the right models in the future, obviating “search.”

Traditional boundaries between apps, libs, compilers, and OSes are
too rigid.

What issues are we as a community ignoring?

Common infrastructures?

10

Today’s autotuning work does/doesn’t address the challenges of
petascale.

How do we measure success for tuning?! Performance?
Productivity!?

What architectures/platforms should we target?

“Parameter tuning’ is the wrong focus for our area, as it suggests
only incremental improvements.

Self-tuned libraries will always outperform compiler-generated
code.

What improvements should we expect from autotuning? From
compilers? libraries?

Simple performance models (e.g., cache-oblivious, simple cores)
will be the right models in the future, obviating “search.”

Traditional boundaries between apps, libs, compilers, and OSes are
too rigid.

What issues are we as a community ignoring?

Common infrastructures?

11

VWho Is not here!

» Many recent “autotuning’ meetings

» SIAM Parallel Processing 08 special sessions
» DOE High Perf. Comp. Sci. Week

» http://www.hpcsw.org/presentations/workshops/autotuning/
» iWAPT (‘06—'08), in Japan

» Others!?

12

http://www.hpcsw.org/presentations/workshops/autotuning/
http://www.hpcsw.org/presentations/workshops/autotuning/

