
cscads'08 1

 POET: Parameterized
Optimizations For Empirical

Tuning
Qing Yi

University of Texas at San
Antonio

cscads'08 2

Positions and Propositions
 Today’s autotuning work does not address the challenges of

petascale
 Not yet. Many components are still missing.

 How do we measure success for tuning?
 Practical vs. theoretical percentage of peak
 Does the produced code achieve close to peak performance?

How hard is it to achieve that?
 What problems should we look at?

 All the components that are required to automate the process
of getting best perf.

 Optimizations + search + abstraction
 Self-tuned libraries will out-perform compilers most of the time ---

because they have more knowledge (people are more smart than
tools?)

 Compilers are better at automation, but to catch libraries, it needs
to better understand abstractions/machines/optimizations

cscads'08 3

Empirical tuning systems
 Domain-specific auto-tuning systems

 Successful and widely used: ATLAS, PHiPAC, FFTW, SPIRAL...
 Manually orchestrate specialized optimizations

 Not reusable across different problem domains

 Empirical optimizing compilers
 Target general-purpose applications

 Results include tuning a wide variety of optimizations on
different platforms

 Hard to incorporate customized optimizations
 Domain-specific knowledge no longer available

 What about combining the two approaches?
 Developers + compilers + libraries + tuning(machines)

 Communication is the key

cscads'08 4

A Collaborative Infrastructure
 Developers -> compilers (what’s missing in existing

programming languages?)
 What to optimize? what to tune? How to parallelize the code

(data partition, communication/synchronization,..)
 Domain/algorithmic specific knowledge (what operations are

distributive? What dependences can be ignored,…)
 Compilers -> Developers (a feedback language/GUI?)

 What has the compiler discovered and what does it plan to do?
 Compilers should consult developers sometimes on important

decisions
 Libraries -> compilers (an annotation language?)

 What is interface of each routine? How to use them?
 Developers/compilers -> Tuning systems (a parameterized

transformation/search language)
 What are the tuning parameters? How to apply optimizing

transformations correspondingly? How to search?

cscads'08 5

POET Is A Transformation Scripting
Language
 A communication interface between developers/compilers

and empirical-tuning systems
 A language for building code generators/transformation

engines in auto-tuning

 Using POET, developers (specialists) can easily define and
tune domain-specific optimizations
 An optimization script for each high-performance kernel
 Programable control for all optimizations

 Compilers can produce a POET transformation script as
output instead of producing a single optimized code
 POET output includes program analysis results, what

transformations to apply, and what to tune

 Developers can see what the compiler is doing and modify
POET output if desired

cscads'08 6

Empirical tuning approach

 Analysis engine: developers or compilers or both of them
 Understand application and machine, choose optimizations to apply

 Search engine exploits the configuration space
 Use info from program analysis (encoded in configuration space)

 POET Transformation engine
 Interpret the POET scripts: where and how to apply transformations
 Produce optimized code based on transformation script and

search configuration

Search Engine

Application

machine
Optimzied code

Final program

Performance

POET transform
scripts

POET Transformation
engine

Configuration space

Parameter
values

Analysis engine
(developer/compiler)

cscads'08 7

Flexibility, Modularity and Efficiency
 Portability --- applications can be shipped in POET

representation
 Tuned by independent search and transformation engines on

different platforms
 Efficiency --- both transformation and search engines are

light-weight
 Heavy weight analysis optimizations done only once in

analysis and optimization engine
 Result parameterized to be tuned many times on different

platforms
 Flexibility --- analysis engine and transformation/search

engine can reside on different machines
 Analysis engine not involved in the tuning process
 Analysis, parameterization, and tuning research are separate

and independent
 Different optimizations can be combined through an external

common language

cscads'08 8

Going all the way
 An integrated

optimization
development
environment
 Analysis engines

(compilers) interact
with developers

 Use the ROSE
compiler at LLNL

 Analysis results
expressed in POET

 can be modified
by developers

 POET
transformations
empirically tuned

cscads'08 9

The POET Language
 Language for expressing parameterized program transformations

 Parameterized code transformations and configuration space
 Transformations controlled by tuning parameters
 Configuration space: parameters and constraints on their values

 Interpreted by search engine and transformation engine

 Language requirements (characteristics):
 Able to parse/transform/output arbitrary languages

 Have tried subsets of C/C++, Cobol, Java; going to add Fortran
 Able to express arbitrary program transformations

 Support all optimizations by compilers or developers
 Have achieved comparable performance to ATLAS(LCSD07)
 Have implemented a large collection of compiler optimizations
 Currently adding multi-threading transformations

 Able to easily compose different transformations
 Built-in tracing capability that allows transformations to be defined

independently and easily reordered
 Empirical tuning of transformation ordering (LCPC08)

 Of course, parameterization is built-in and well supported

cscads'08 10

Language Summary
 POET stands for Parameterized Optimizations for Empirical Tuning

 Designed for empirical tuning of compiler optimizations
 Automated code generation and transformation

 Focused on parameterization of compiler transformations
 Includes many difficult transformations on AST

 Supported data types
 strings, integers, lists, tuples, associative tables, code templates (AST

nodes)
 Support arbitrary control flow

 loops, conditionals, function calls, recursion
 Support Built-in operations for code (AST) transformation

 Pattern-matching based traversal, replacement and query
 Duplication and permutation of code fragments
 Tracing of a sequence of transformations on a single AST fragment
 Parameterization and variation of transformation configurations

 Predefined library of code transformation routines
 Currently support many compiler transformations

cscads'08 11

POET: Describing Syntax of
Programming Languages

 POET can be used to
parse/unparse arbitrary
languages

 Syntax of source language
described in a collection of
code templates

 Code templates
 Used in parsing/unparsing

 Data structures used in IR
(AST)

 Top-down recursive
descent parsing of the
input program

 Can insert annotations in
the input to speed up
parsing

<code FunctionCall pars=(func,args) >
@func@(@args@)
</code>

<code FunctionDecl
 pars=(decl:(ParseTypeDecl[stop="("]),
 params : TUPLE(ParseTypeDecl[stop=(","|")")])) >
@decl@(@params@)
</code>

<code FunctionDefn
 pars=(decl : FunctionDecl,
 body : ((LIST(Nest|Stmt)|_),_))>
@decl@
{
 @body@
}

</code>

Example code templates for C

cscads'08 12

Parsing Functions
 Some language

syntax may be too
complex to fully
express using code
templates
 Can define parsing

functions that
perform top-down
parsing explicitly

 Example: parse type
declarations in C

 Not required to parse
an entire language
 Can selectively

parse fragments
that transformations
care

……
<xform ParseTypeDecl pars=(input) stop="”
 output=(result,restOfInput) >
switch (input) {
case (first second) :
 if (first : stop) { ("", input) }
 else {
 (secondResult,rest) = ParseTypeDecl(second);
 if (secondResult == "") { (first, rest) }
 else if (secondResult : TypeDecl#(secondType,var)) {
 ((secondType == " ")? (TypeDecl#(first, var),rest)
 : (TypeDecl#((first secondType),var), rest))}
 else if (first == " " || first == "*" || first == "&")
 { (TypeDecl#(first, secondResult), rest) }
 else { ((first secondResult), rest) }
 }
default:
 (input : stop)? ("",input) : (input, "")
}
</xform>

cscads'08 13

POET: Define transformations
<xform Stripmine pars=(inner,bsize,outer)
 unroll=0 split=0
 output=(_nvars,_bloop,_tloop,_cloop,_body)>
 switch outer {
 case inner : ("","","","",inner)
 case Loop#(i,start,stop,step):
 default:
 }
</xform>

<xform BlockHelp
 pars=(bloop,tloop,rloop,bbody,cbody,cloop)>
 if (bloop == "") ... <*base case*>...
 else { ...<*recursively call BlockHelp*>... }
</xform>

<xform BlockLoops
 pars=(inner,outer,decl,input) factor=16
 cleanup=0 unroll = 0 tDecl=“” trace=“”>
 ... = Stripmine[unroll=unroll,split=split]
 (inner, bsize,outer);
 ... call BlockHelp modify input ...
</xform>

 POET is designed to ease
the construction of code
transformations
 Supports pattern

matching, code
traversal,
replacement,
duplication,
permutation, …

 Support control flows
and recursion

 support auto tracing
of code fragments
going through
transformations

 Libraries to support
existing compiler
transformations known
to be important

cscads'08 14

Applying Transformations
 Writing a POET

script
 Define

transformation
parameters

 Define the input
computation

 Define tracing
variables

 Define each
transformation
independently

 Apply
transformations
and output

<parameter fname=STRING[""] "input file name"/>
<parameter pre=("s","d")["d"] "Whether to
compute at single- or double- precision" />
<parameter NB=1.._[62], MB=1.._[72], KB =
1.._[72] "Blocking size of the matrices"/>

<input target=gemm code=“Cfront.code”
type=FunctionDefn file=fname/>

<define Specialize DELAY { … }/>
.......
<output dgemm_kernel.c (TRACE gemm;
APPLY Specialize;
APPLY A_ScalarRepl; APPLY nest3_UnrollJam;
APPLY B_ScalarRepl; APPLY C_ScalarRepl;
APPLY array_ToPtrRef; APPLY Abuf_SplitStmt;
APPLY body2_Vectorize; APPLY array_FiniteDiff;
APPLY body2_Prefetch; APPLY nest1_Unroll;
gemm) />

cscads'08 15

Example
Tuning Transformation Orders

 PERM1: permutation of loop-unroll&jam with scalar
replacement for A,B,C

 Best case:SR-A -> UJ -> SR-B + SR-C

Performance Sensitivity to PERM1 on C2D (dgemm)

0

1

2

3

4

5

1 3 5 8 10 13 15 17 20 22

PERM1 Value

P
e
rf

o
rm

a
n

c
e
 (

G
F
L
O

P
S

)

Colaborate
d work with
Apan
Qasem
(LCPC08)

cscads'08 16

Summary and Ongoing work
 Proposition: separate optimization concerns from algorithm

design
 Start from a simple algorithm specification/implementation

 In C/C++ or a domain-specific language
 Use an optimization environment/language to achieve high

performance through a sequence of code transformations
 Use auto-tuning for architecture sensitive transformations

 Stabilize POET for software optimization needs
 A language for addressing code generation/optimization needs of

software development
 Produce efficient implementations from high-level specifications

 Using POET to build high-performance kernels/benchmarks
 Going all the way in optimizations (parallelization,memory, registers)

 Auto-tuning of optimization spaces

 What does it take for a compiler to automatically produce the POET scripts?
What knowledge is missing? What abstraction is necessary?

