
1

BitBlaze: Binary Analysis for
Computer Security

Dawn Song

Computer Science Dept.
UC Berkeley

2

Malicious Code---Critical Threat on the Internet

• Diverse forms
– Worms, botnets, spyware, viruses, trojan horses, etc.

• High prevelance
– CodeRed Infected 500,000 servers
– 61% U.S. computers infected with spyware [National Cyber

Security Alliance06]
– Millions of computers in botnets

• Fast propagation
– Slammer scanned 90% Internet within 10 mins

• Huge damage
– $10billion annual financial loss [ComputerEconomics05]

3

Defense is Challenging
• Software inevitably has bugs/security vulnerabilities

– Intrinsic complexity
– Time-to-market pressure
– Legacy code
– Long time to produce/deploy patches

• Attackers have real financial incentives to exploit them
– Thriving underground market

• Large scale zombie platform for malicious activities
• Attacks increase in sophistication

• We need more effective techniques and tools for defense
– Previous approaches largely symptom & heuristics based

4

The BitBlaze Approach
• Semantics based, focus on root cause:

Automatically extracting security-related properties from
binary code (vulnerable programs & malicious code) for
effective defense

• Automatically create high-quality detection & defense
mechanisms

– Automatic generation of vulnerability signatures to filter out
exploits

– Automatic detection and classification of malware
» Spyware, keylogger, rootkit, etc.
» Automatic detection of botnet traffic

• Able to handle binary-only setting

5

Binary Analysis: Imperative & Challenging

• Binary analysis is imperative
– Source code is often unavailable

» COTS programs
» Malicious code

– Binary is truthful
• Binary analysis is challenging

– Lack higher-level semantics
» Even disassembling is non-trivial

– Malicious code may obfuscate
» Code packing
» Code encryption
» Code obfuscation & dynamically generated code

• Need techniques & tools to address these issues

6

The BitBlaze Vision & Research Foci

1. Design and develop a unified binary analysis platform for
security applications
– Identify & cater common needs of different security applications
– Leverage recent advances in program analysis, formal methods,

binary instrumentation/analysis techniques to enable new
capabilities

2. Introduce binary-centric approach as a powerful arsenal
to solve real-world security problems
• COTS vulnerability analysis & defense
• Malicious code analysis & defense
• Other security applications

7

The BitBlaze Binary Analysis Platform
• A unique infrastructure:

– Novel fusion of static, dynamic analysis techniques, and formal
analysis techniques such as symbolic execution

– Vine: accurate static analysis using VineIL (Intermediate Language)
– TEMU: whole-system, fine-grained, symbolic emulation system
– Rudder: automatic exploration of program execution space

Vine:
Static Analysis

Component

TEMU:
Dynamic Analysis

Component

Rudder:
Mixed Execution

Component

BitBlaze Binary Analysis Platform

8

BitBlaze in Action: Addressing Security Problems

• Effective new approaches for diverse security problems
– Over dozen projects
– Over 12 publications in security conferences

• Exploit detection, diagnosis, defense

• In-depth malware analysis
• Others:

– Reverse engineering
– Deviation detection [Best Paper Award]
– Semantic binary diff

Filter
Generator

Vulnerability
InfoDiagnosis

Engine
Exploits

Exploit
Detector

Inputs

9

Talk Outline
• Motivating security applications

– Automatic patch-based exploit generation

• Components
– Vine: VineIR, static analysis on VineIR
– TEMU: whole-system, fine-grained, symbolic emulation system
– Rudder: automatic execution space exploration

• Future directions and conclusion

10

Automatic Patch-based Exploit Generation

• Given vulnerable program P, patched program P’,
automatically generate exploits for P

• Why care?
– Exploits worth money

» Typically $10,000 - $100,000

– Know thy enemy
» Security of patch distribution schemes?

– Patch testing

11

Running Example

• All integers unsigned 32-bits
• All arithmetic mod 232

• Motivated by real-world vulnerabilityif input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

12

Running Example

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P input = 232-2

232-2 % 2 == 0

s := 0 (232-2 + 2 % 232)

ptr := realloc(ptr,0)

Using ptr is a problem

13

Running Example

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P Integer Overflow when:
s < input

14

Running Example

I didn’t think
about overflow!

Safe inputsAll 32-bit integers

Exploits:
232-3,
232-2,
232-1

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

15

Safe InputsProgram
Inputs

Input Validation Vulnerability
• Programmer fails to sanitize inputs
• Large class of security-critical vulnerabilities

– “Buffer overflow”, “integer overflow”, “format string vulns”, etc.
• Responsible for many, many compromised computers

16

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P
if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch leaks

1. Vulnerability point (where in code)

2. Vulnerability condition (under what conditions)

Patch

Overflow when
s < input

17

if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

Exploits for P are inputs that fail
vulnerability condition at vulnerability point

(s > input) = false

18

if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch

Exploit Generation
1. Diff P and P’ to identify

candidate vuln point and
condition

2. Create input that satisfy
candidate vuln condition in P’

– i.e., candidate exploits
3. Check candidate exploits on P

Our Approach for Patch-based Exploit Generation (I)

19

Our Approach for Patch-based Exploit Generation (II)

• Diff P and P’ to identify candidate vuln point and condition
– Currently only consider inserted sanity checks
– Use binary diffing tools to identify inserted checks

» Existing off-the-shelf syntactic diffing tools
» BinHunt: our semantic diffing tool

• Create candidate exploits
– i.e., input that satisfy candidate vuln condition in P’

• Validate candidate exploits on P
– E.g., dynamic taint analysis (TaintCheck)

20

Create Candidate Exploits
• Given candidate vulnerability point & condition
• Compute Weakest Precondition over program paths

– Using vulnerability condition as post condition
– Construct formulas representing conditions on input

» Whose execution path included
» Satisfying the vulnerability condition at vulnerability point

• Solve formula using solvers
– E.g., decision procedures
– Satisfying answers are candidate exploits

21

Different Approaches for Creating Formulas

• Statically computing formula
– Covering many paths (without explicitly enumerating them)
– Sometimes hard to solve formula

• Dynamically computing formula
– Formula easier to solve
– Covering only one path

• Combined dynamic and static approach
– Covering multiple paths
– Tune for formula complexity

• Experimental results
– Different approach effective for different scenarios

• Other techniques to make formulas smaller and easier
to solve

22

Experimental Results
• 5 Microsoft patches

– Mostly 2007
– Integer overflow, buffer overflow, information disclosure, DoS

• Automatically generated exploits for all 5 patches
– In seconds to minutes
– 3 out of 5 have no publicly available exploits
– Automatically generated exploit variants for the other 2

• Diffing time
– A few minutes

23

Exploit Generation Results

0.140.263.78N/A4.79Solver
104.1413.3125.29N/A6.72 Forumla
104.2813.5729.07N/A11.51Combined

N/AN/A21.42N/A81.15Solver
N/AN/A4.99N/A2.32Formula

N/AN/A26.41N/A83.47Static
Total

N/AN/A0.016.930.17Solver
N/AN/A10.334.645.51Formula

N/AN/A10.3411.575.68Dynamic
Total

PNGIGMPGDIASPNet
_Filter

DSA_SetItemTime (s)

24

Talk Outline
• Motivating security applications

– Automatic patch-based exploit generation

• Components
– Vine: VineIR, static analysis on VineIR
– TEMU: whole-system, fine-grained, symbolic emulation system
– Rudder: automatic execution space exploration

• Future directions and conclusion

25

Vine
• Static analysis component

Disassemble Converting
to IR

Control flow,
Data flow analysis,

Optimizations,
Value Set Analysis

Symbolic execution,
Computing WP

Computing Chop, slicing
Program Transformation

Output
Program

Binary

Disassembly

26

Vine IR
• Simple RISC-like language, well-typed

• Handle x86, and ARM in progress

lval := exp
| goto exp
| if exp then goto exp1 else exp2
| return exp
| call exp
| assert exp
| special exp
| unknown (effects)

27

TEMU
• Work for both Windows & Linux, applications & kernel
• Build on QEMU

Dynamic
Binary

Instrumentation

Log
instructions

Record Data
Dependency

(Taint Analysis)

Symbolic
Execution w

Symbolic
System

Environment

Annotated
Trace

Slicing

Layered,
Panoptic
Symbolic
Execution

Function
Call

Sequence

28

Rudder
• Compute path predicate
• Obtain new path predicate by reverting branches
• Solve path predicate to obtain new input to go down a

different path

Path predicate
generator Path Selector

Solving
New Path
Predicate

Input to
New path

Rudder

29

BitScope
• Built on top of TEMU & Rudder
• Work for packed code, self-encrypted code

30

BitScope: THE In-depth Malware Analysis infrastructure

• Identify/analyze malicious behavior based on root cause
– Privacy-breaching malware: spyware, keylogger, backdoor, etc.
– Malware perturbing system by hooking: rootkit, etc.

• Understand how malware get into the system
– What mechanisms/vulnerabilities does it exploit

• Explore hidden behavior, detect trigger-based behavior
– Automatically identifying botnet program commands, time bombs,

etc.
• Semantic & correlation analysis of malware input/output

behavior
– Understanding the semantics of botnet program commands, etc.

31

Challenges
• Performance & scalability for large programs

• Sample components we can take advantage of
– Better identification of functions & resolution of indirect jumps

» Some of our VSA techniques may help
– Better stack-walker
– Binary aliasing analysis
– More efficient binary instrumentation

32

Conclusion
• BitBlaze binary analysis platform

– A unique fusion of dynamic, static analysis & formal analysis
(symbolic execution, WP, etc.)

• Security Applications
– Vulnerability discovery, diagnosis, defense
– In-depth malware analysis
– Reverse engineering
– Binary diffs

• Components may support other applications

33

Contact

• http://bitblaze.cs.berkeley.edu

• dawnsong@cs.berkeley.edu

• BitBlaze team:
David Brumley, Juan Caballero, Ivan Jager, Cody Hartwig,
Min Gyung Kang, Zhenkai Liang, James Newsome,
Pongsin Poosankam, Prateek Saxena, Heng Yin

