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Malicious Code---Critical Threat on the Internet

• Diverse forms
– Worms, botnets, spyware, viruses, trojan horses, etc.

• High prevelance
– CodeRed Infected 500,000 servers
– 61% U.S. computers infected with spyware [National Cyber 

Security Alliance06]
– Millions of computers in botnets

• Fast propagation
– Slammer scanned 90% Internet within 10 mins

• Huge damage
– $10billion annual financial loss [ComputerEconomics05]
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Defense is Challenging
• Software inevitably has bugs/security vulnerabilities

– Intrinsic complexity
– Time-to-market pressure
– Legacy code
– Long time to produce/deploy patches

• Attackers have real financial incentives to exploit them
– Thriving underground market

• Large scale zombie platform for malicious activities
• Attacks increase in sophistication

• We need more effective techniques and tools for defense
– Previous approaches largely symptom & heuristics based
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The BitBlaze Approach
• Semantics based, focus on root cause:

Automatically extracting security-related properties from 
binary code (vulnerable programs & malicious code) for 
effective defense

• Automatically create high-quality detection & defense 
mechanisms

– Automatic generation of vulnerability signatures to filter out 
exploits

– Automatic detection and classification of malware
» Spyware, keylogger, rootkit, etc.
» Automatic detection of botnet traffic

• Able to handle binary-only setting
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Binary Analysis: Imperative & Challenging

• Binary analysis is imperative
– Source code is often unavailable

» COTS programs
» Malicious code

– Binary is truthful
• Binary analysis is challenging

– Lack higher-level semantics
» Even disassembling is non-trivial

– Malicious code may obfuscate 
» Code packing
» Code encryption
» Code obfuscation & dynamically generated code

• Need techniques & tools to address these issues
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The BitBlaze Vision & Research Foci

1. Design and develop a unified binary analysis platform for 
security applications
– Identify & cater common needs of different security applications
– Leverage recent advances in program analysis, formal methods, 

binary instrumentation/analysis techniques to enable new 
capabilities

2. Introduce binary-centric approach as a powerful arsenal 
to solve real-world security problems
• COTS vulnerability analysis & defense
• Malicious code analysis & defense
• Other security applications
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The BitBlaze Binary Analysis Platform
• A unique infrastructure:

– Novel fusion of static, dynamic analysis techniques, and formal 
analysis techniques such as symbolic execution

– Vine: accurate static analysis using VineIL (Intermediate Language)
– TEMU: whole-system, fine-grained, symbolic emulation system
– Rudder: automatic exploration of program execution space

Vine:
Static Analysis

Component

TEMU:
Dynamic Analysis

Component

Rudder:
Mixed Execution

Component

BitBlaze Binary Analysis Platform
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BitBlaze in Action: Addressing Security Problems

• Effective new approaches for diverse security problems
– Over dozen projects
– Over 12 publications in security conferences

• Exploit detection, diagnosis, defense

• In-depth malware analysis
• Others: 

– Reverse engineering
– Deviation detection [Best Paper Award]
– Semantic binary diff

Filter
Generator

Vulnerability
InfoDiagnosis

Engine
Exploits

Exploit
Detector

Inputs



9

Talk Outline
• Motivating security applications

– Automatic patch-based exploit generation

• Components
– Vine: VineIR, static analysis on VineIR
– TEMU: whole-system, fine-grained, symbolic emulation system
– Rudder: automatic execution space exploration

• Future directions and conclusion
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Automatic Patch-based Exploit Generation

• Given vulnerable program P, patched program P’,
automatically generate exploits for P

• Why care?
– Exploits worth money

» Typically $10,000 - $100,000 

– Know thy enemy
» Security of patch distribution schemes?

– Patch testing
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Running Example

• All integers unsigned 32-bits
• All arithmetic mod 232

• Motivated by real-world vulnerabilityif input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P
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Running Example

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P input = 232-2

232-2 % 2 == 0

s := 0 (232-2 + 2 % 232)

ptr := realloc(ptr,0)

Using ptr is a problem
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Running Example

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P Integer Overflow when:
s < input
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Running Example

I didn’t think 
about overflow!

Safe inputsAll 32-bit integers

Exploits:
232-3,
232-2,
232-1

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P



15

Safe InputsProgram
Inputs

Input Validation Vulnerability
• Programmer fails to sanitize inputs
• Large class of security-critical vulnerabilities

– “Buffer overflow”, “integer overflow”, “format string vulns”, etc. 
• Responsible for many, many compromised computers
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if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P
if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch leaks

1. Vulnerability point (where in code)

2. Vulnerability condition (under what conditions)

Patch

Overflow when 
s < input
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if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

Exploits for P are inputs that fail 
vulnerability condition at vulnerability point

(s > input) = false
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if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch

Exploit  Generation
1. Diff P and P’ to identify 

candidate vuln point and 
condition 

2. Create input that satisfy 
candidate vuln condition in P’

– i.e., candidate exploits
3. Check candidate exploits on P

Our Approach for Patch-based Exploit Generation (I)
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Our Approach for Patch-based Exploit Generation (II)

• Diff P and P’ to identify candidate vuln point and condition
– Currently only consider inserted sanity checks
– Use binary diffing tools to identify inserted checks

» Existing off-the-shelf syntactic diffing tools
» BinHunt: our semantic diffing tool

• Create candidate exploits
– i.e., input that satisfy candidate vuln condition in P’

• Validate candidate exploits on P
– E.g., dynamic taint analysis (TaintCheck)
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Create Candidate Exploits
• Given candidate vulnerability point & condition
• Compute Weakest Precondition over program paths

– Using vulnerability condition as post condition
– Construct formulas representing conditions on input

» Whose execution path included
» Satisfying the vulnerability condition at vulnerability point

• Solve formula using solvers
– E.g., decision procedures
– Satisfying answers are candidate exploits
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Different Approaches for Creating Formulas

• Statically computing formula
– Covering many paths (without explicitly enumerating them)
– Sometimes hard to solve formula

• Dynamically computing formula
– Formula easier to solve
– Covering only one path

• Combined dynamic and static approach
– Covering multiple paths
– Tune for formula complexity

• Experimental results
– Different approach effective for different scenarios

• Other techniques to make formulas smaller and easier 
to solve
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Experimental Results
• 5 Microsoft patches

– Mostly 2007
– Integer overflow, buffer overflow, information disclosure, DoS 

• Automatically generated exploits for all 5 patches
– In seconds to minutes
– 3 out of 5 have no publicly available exploits
– Automatically generated exploit variants for the other 2

• Diffing time
– A few minutes
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Exploit Generation Results

0.140.263.78N/A4.79Solver
104.1413.3125.29N/A6.72 Forumla
104.2813.5729.07N/A11.51Combined

N/AN/A21.42N/A81.15Solver
N/AN/A4.99N/A2.32Formula

N/AN/A26.41N/A83.47Static 
Total

N/AN/A0.016.930.17Solver
N/AN/A10.334.645.51Formula

N/AN/A10.3411.575.68Dynamic 
Total

PNGIGMPGDIASPNet
_Filter

DSA_SetItemTime (s)
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Talk Outline
• Motivating security applications

– Automatic patch-based exploit generation

• Components
– Vine: VineIR, static analysis on VineIR
– TEMU: whole-system, fine-grained, symbolic emulation system
– Rudder: automatic execution space exploration

• Future directions and conclusion
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Vine
• Static analysis component

Disassemble Converting
to IR

Control flow,
Data flow analysis,

Optimizations,
Value Set Analysis

Symbolic execution,
Computing WP 

Computing Chop, slicing
Program Transformation

Output
Program

Binary

Disassembly
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Vine IR
• Simple RISC-like language, well-typed

• Handle x86, and ARM in progress

lval := exp
| goto exp
| if exp then goto exp1 else exp2
| return exp
| call exp
| assert exp
| special exp
| unknown (effects)   
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TEMU
• Work for both Windows & Linux, applications & kernel
• Build on QEMU

Dynamic
Binary

Instrumentation

Log
instructions

Record Data
Dependency

(Taint Analysis)

Symbolic
Execution w

Symbolic
System

Environment

Annotated
Trace

Slicing

Layered,
Panoptic
Symbolic
Execution

Function
Call

Sequence
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Rudder
• Compute path predicate
• Obtain new path predicate by reverting branches
• Solve path predicate to obtain new input to go down a 

different path

Path predicate
generator Path Selector

Solving
New Path
Predicate

Input to 
New path

Rudder



29

BitScope
• Built on top of TEMU & Rudder
• Work for packed code, self-encrypted code
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BitScope: THE In-depth Malware Analysis infrastructure

• Identify/analyze malicious behavior based on root cause
– Privacy-breaching malware: spyware, keylogger, backdoor, etc.
– Malware perturbing system by hooking: rootkit, etc.

• Understand how malware get into the system
– What mechanisms/vulnerabilities does it exploit

• Explore hidden behavior, detect trigger-based behavior
– Automatically identifying botnet program commands, time bombs, 

etc.
• Semantic & correlation analysis of malware input/output 

behavior
– Understanding the semantics of botnet program commands, etc.
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Challenges
• Performance & scalability for large programs

• Sample components we can take advantage of
– Better identification of functions & resolution of indirect jumps

» Some of our VSA techniques may help
– Better stack-walker
– Binary aliasing analysis
– More efficient binary instrumentation
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Conclusion
• BitBlaze binary analysis platform

– A unique fusion of dynamic, static analysis & formal analysis 
(symbolic execution, WP, etc.)

• Security Applications
– Vulnerability discovery, diagnosis, defense
– In-depth malware analysis
– Reverse engineering
– Binary diffs

• Components may support other applications
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Contact

• http://bitblaze.cs.berkeley.edu

• dawnsong@cs.berkeley.edu

• BitBlaze team:
David Brumley, Juan Caballero, Ivan Jager, Cody Hartwig, 
Min Gyung Kang, Zhenkai Liang, James Newsome, 
Pongsin Poosankam, Prateek Saxena, Heng Yin


