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MATE - Monitoring, Analysis and Tuning Environment

MATE: Overview
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MATE: Overview

• The user specified model is made of:
• Measure Points – where to insert instrumentation

• Performance Model- how is the application analyzed

• Tuning Actions– how to overcome performance bottlenecks  

(and when)

• All this knowledge is provided in the form of a tunlet – a 

user provided piece of coded integrated to the Analyzer.
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MATE: Components
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• Application Controller – AC (Monitor/Tuner)

• Dynamic Monitoring Library – DMLib

• Analyzer



MATE: Components (Monitors)
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• Instrumentation management via DynInst
– Dynamically load DMLib

– Generate monitoring snippets that 
call appropriate library functions

– Insert/remove snippets in/from 
requested points

• API

– AddEventTrace(tid,

eventId,

funcName,

instrPlace,

attrs)

– RemoveEventTrace(tid,eventId)



MATE:  Components (Tuners)
• Tuning via DynInst

– Generate tuning snippet according to 
the Analyzer’s request

– Inserting tuning snippet

• API
– LoadLibrary(tid,path)

– SetVariableValue(tid,params,brkpt)

– ReplaceFunction(…)

– InsertFunctionCall(…)

– OneTimeFunctionCall(…)

– RemoveFunctionCall(…)

– FunctionParamChange(…)
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MATE: Components DMLib
• Register event

• What, When, Where – event type (id, place),  

global timestamp, task identifier

• Requested attributes

• Deliver event to the Analyzer

• API

– DMLib_InitLogger(tid, 

analyzerHost,port,clockDiff)

– DMLib_OpenEvent(id, nAttrs)

– DMLib_AddIntAttr(value)

– DMLib_AddFloatAttr(value)

– DMLib_AddCharAttr(value)

– DMLib_AddStringAttr(value)

– DMLib_CloseEvent()

– DMLib_DoneLogger()
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MATE: Components (Analyzer)

Services
• Automatic performance analysis on the fly

– Request for events

– Collect incoming events

– Find bottlenecks among events applying the performance 
model

– Find solutions that overcome bottlenecks

– Send tuning request

• Analyzer is provided with the application knowledge
about performance problems 



Tunlets

• This knowledge is provided as a set of tunlets

• A tunlet contains specific code related to a concrete 
performance problem

• A tunlet is a C/C++ library dynamically loaded into the 
Analyzer process

MATE: Components (Analyzer)
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Events (from DMLibs) via TCP/IP
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DMA: Overview

• Primary objective

– Develop a tool that is able to analyze the performance of 

parallel applications, detect bottlenecks and explain their 

reasons

• Our approach
– Dynamic on-the-fly analysis
– Automatic modeling of application structure and behavior
– Root-cause analysis based on happens-before relationships
– Tool primarily targeted to MPI-based parallel programs 
– Focus on communication problems
– Applicable to wide range of MPI applications
– Scalable to thousands and more CPUs 
– Easy to use: no source code 13



DMA: Building de Model

Task Activity Graph (TAG)
• Abstracts execution of a single task

• Execution is described by units that correspond to different activities 

• Nodes reflect execution of communication activities and selected 

loops

• Edges represent sequential flow of execution (computation activities)

• TAG maintains happens-before relationship between nodes and edges

14



DMA: Building the Model

PTAG: Merging TAGs into parallel model

• Individual TAG models connected by message edges (P2P, 
Collective) enable construction of Parallel-TAG (PTAG)

• PTAG is updated periodically by sampling and merging TAGs

15



DMA: Tool architecture
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DMA Daemon

MPI Task

shared memory

DMA: Tool daemon in-depth
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• Use TAG to identify bottlenecks in individual tasks

• Profile edges for non-communication problems

• Analyze transfer costs and synchronization issues for communication 

problems

DMA: Root-cause analysis

Blocked receive
~42% time

Communication or
synchronization problem

CPU-bound activity
~45% time



DMA: Root-cause analysis
• Use PTAG to search for causes of communication latencies (nodes) by 

means of cause-effect analysis

• Latencies explained by differences in corresponding execution paths of 

communicating tasks
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MATE and DMA
Installation

• GNU g++ 

• PVM 3.4 / Open MPI 1.2.x environment

• DynInst 5.1

• Contact: 
– MATE: Anna Morajko, e-mail: Anna.Morajko@uab.es

– DMA: Oleg Morajko, e-mail: olegm@aia.ptv.es

Thank you for your attention
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