
MATE and DMA: Tools for
Dynamic Performance Analysis

Eduardo Cesar
Computer Architecture and OS Department UAB

Contents

• MATE

– Overview

– Components

• DMA

– Overview & building the model (TAG and PTAG)

– Performance Analysis

MATE - Monitoring, Analysis and Tuning Environment

MATE: Overview

Machine N+1

Machine 1
Machine N

Analyzer

AC

instr.

events

modif.

events

DMLib
DMLibDMLib

Task1 Task2Task3

instr.

AC

Monitor

Tuner

MATE Architecture

4

Measure Points Tuning Actions

Performance

Model

MATE: Overview

• The user specified model is made of:
• Measure Points – where to insert instrumentation

• Performance Model- how is the application analyzed

• Tuning Actions– how to overcome performance bottlenecks

(and when)

• All this knowledge is provided in the form of a tunlet – a

user provided piece of coded integrated to the Analyzer.

Analyzer

Tunlet

MATE: Components

Machine 1 Machine 2

Machine 3

Analyzer

AC

instr.

events

modif.

events

DMLib
DMLib

Task1 Task2

instr.

AC

• Application Controller – AC (Monitor/Tuner)

• Dynamic Monitoring Library – DMLib

• Analyzer

MATE: Components (Monitors)

Machine 1

DMLib DMLib

Task2Task1

Instrument

Via

DynInst

Machine 2

Analyzer

add event/

remove event

AC

Monitor

• Instrumentation management via DynInst
– Dynamically load DMLib

– Generate monitoring snippets that
call appropriate library functions

– Insert/remove snippets in/from
requested points

• API

– AddEventTrace(tid,

eventId,

funcName,

instrPlace,

attrs)

– RemoveEventTrace(tid,eventId)

MATE: Components (Tuners)
• Tuning via DynInst

– Generate tuning snippet according to
the Analyzer’s request

– Inserting tuning snippet

• API
– LoadLibrary(tid,path)

– SetVariableValue(tid,params,brkpt)

– ReplaceFunction(…)

– InsertFunctionCall(…)

– OneTimeFunctionCall(…)

– RemoveFunctionCall(…)

– FunctionParamChange(…)

Machine 1

Task2Task1

Tune

Via

DynInst

Machine 2

Analyzer

Apply tuning

AC

Tuner

MATE: Components DMLib
• Register event

• What, When, Where – event type (id, place),

global timestamp, task identifier

• Requested attributes

• Deliver event to the Analyzer

• API

– DMLib_InitLogger(tid,

analyzerHost,port,clockDiff)

– DMLib_OpenEvent(id, nAttrs)

– DMLib_AddIntAttr(value)

– DMLib_AddFloatAttr(value)

– DMLib_AddCharAttr(value)

– DMLib_AddStringAttr(value)

– DMLib_CloseEvent()

– DMLib_DoneLogger()

Machine 1

DMLib

Task1

pvm_send (p1, p2)

{

}

DMLib_OpenEvent();

DMLib_AddIntAttr();

DMLib_AddIntAttr();

DMLib_CloseEvent();

Analyzer

entry

1

0

64884

524247

262149

1

TCP/IP

event

API implementation

MATE: Components (Analyzer)

Services
• Automatic performance analysis on the fly

– Request for events

– Collect incoming events

– Find bottlenecks among events applying the performance
model

– Find solutions that overcome bottlenecks

– Send tuning request

• Analyzer is provided with the application knowledge
about performance problems

Tunlets

• This knowledge is provided as a set of tunlets

• A tunlet contains specific code related to a concrete
performance problem

• A tunlet is a C/C++ library dynamically loaded into the
Analyzer process

MATE: Components (Analyzer)

Analyzer

Tunlet

Measure points Tuning point, action,

sync

Performance model

Events (from DMLibs) via TCP/IP

Event
Collector

thread

DTAPI

Controller

Tunlet

Tunlet

Event
Repository

Application model

AC Proxy

Tuning request

(to tuner)

via TCP/IP

Instrument. request

(to monitor)

via TCP/IP

MetaData (from ACs) via TCP/IP

Tunlet

MATE: Components (Analyzer)

Contents

• MATE

– Overview

– Components

• DMA

– Overview & building the model (TAG and PTAG)

– Performance Analysis

DMA: Overview

• Primary objective

– Develop a tool that is able to analyze the performance of

parallel applications, detect bottlenecks and explain their

reasons

• Our approach
– Dynamic on-the-fly analysis
– Automatic modeling of application structure and behavior
– Root-cause analysis based on happens-before relationships
– Tool primarily targeted to MPI-based parallel programs
– Focus on communication problems
– Applicable to wide range of MPI applications
– Scalable to thousands and more CPUs
– Easy to use: no source code 13

DMA: Building de Model

Task Activity Graph (TAG)
• Abstracts execution of a single task

• Execution is described by units that correspond to different activities

• Nodes reflect execution of communication activities and selected

loops

• Edges represent sequential flow of execution (computation activities)

• TAG maintains happens-before relationship between nodes and edges

14

DMA: Building the Model

PTAG: Merging TAGs into parallel model

• Individual TAG models connected by message edges (P2P,
Collective) enable construction of Parallel-TAG (PTAG)

• PTAG is updated periodically by sampling and merging TAGs

15

DMA: Tool architecture

16

Front-end

Modeler 1

TBON Node 1 TBON Node 2

…

merge

update

build

sample

MPI Task 1

instrument

Modeler 2

MPI Task 2

Modeler 3

MPI Task 3

Modeler N

MPI Task N

…

…

update

1

2

3

4

5

6

analyze7

DMA Daemon

MPI Task

shared memory

DMA: Tool daemon in-depth

17

Analyzer

DynInst

Task code

RT library

MPI library

update TAG
and metrics

sample

request update

instrument

intercepted
events

Modeler

• Use TAG to identify bottlenecks in individual tasks

• Profile edges for non-communication problems

• Analyze transfer costs and synchronization issues for communication

problems

DMA: Root-cause analysis

Blocked receive
~42% time

Communication or
synchronization problem

CPU-bound activity
~45% time

DMA: Root-cause analysis
• Use PTAG to search for causes of communication latencies (nodes) by

means of cause-effect analysis

• Latencies explained by differences in corresponding execution paths of

communicating tasks

Inefficiency caused by

Late Sender

problem

...

...

...

...

Path q (Task 1)

Path p (Task 2)

e1 e2

e3

e1 e2 e4 e5 e6

e7

Inefficiency

at MPI_Recv

(Task 1)

Computation

edge e3

(Task 2)

91.9%

Late Sender

(Task 2)

Computation

edge e2

(Task 2)

7.7%

Waiting-time

138,4 sec.

MATE and DMA
Installation

• GNU g++

• PVM 3.4 / Open MPI 1.2.x environment

• DynInst 5.1

• Contact:
– MATE: Anna Morajko, e-mail: Anna.Morajko@uab.es

– DMA: Oleg Morajko, e-mail: olegm@aia.ptv.es

Thank you for your attention

mailto:Anna.Morajko@uab.es
mailto:olegm@aia.ptv.es

