
University of Maryland

A Path towards a Common Binary
Analysis IR

Jeff Hollingsworth

University of Maryland

Why A Binary Program IR

Useful for many types of analyses
– Identification of functions
– Control flow graphs
– Slicing
– Information flow

Sharing
– Low level parts are tedious
– Many uses of higher analyses (CFG, Slicing, etc.)
– Use previous analyses to perform others

University of Maryland

Approach

Start from a machine impendent
instruction abstraction
– Provides basis for platform independent

analyses
Generic Annotation Framework
– Way to store results of analyses
– Allows use by other analyses

Serialization Framework
– Share results with other tools
– Ruse expensive analyses in different runs

University of Maryland

Annotation Framework

Many analyses generate data while
examining instructions/functions etc.
– Generally costly operations

• Store the result !
Dyninst Tradition:
– New analysis means add variable(s) classes
– Error prone
– API changes
– Requires rebuild

University of Maryland

Annotation Framework

Create a unified Annotation Framework
instead
Use a well-defined interface for each
object that needs to be annotated
Has to be extensible
– Add new annotation types at runtime

Support for storing metadata along with
data
– Confidence metrics
– Pedigree data

University of Maryland

Annotation Framework Example

BPatch_instruction

Register readSet[]
Register writeSet[]

BPatch_function

Graph* CFG
Graph* dataDependenceGraph
Graph* controlDependenceGraph
Graph* programDependenceGraph
Graph* slicingGraph

Requires development effort
Not desirable
– Error-prone
– Tedious

University of Maryland

Annotation Framework

Annotatable

createAnnotationType(String)
findAnnotationType(String)
createMetadata(String)
findMetadata(String)
insertAnnotation(AnnotationType, Annotation*)
findAnnotation(AnnotationType, Annotation*, int=0)

BPatch_Instruction BPatch_Function

University of Maryland

Annotation Framework
Annotation

void* value

setValue(void*)
getValue()

AnnotationWithSource

source

getSource()

AnnotationWithConfidence

confidenceValue

getConfidence()

University of Maryland

Serialization

Two Formats:
– Xml – “portable” for sharing information
– Binary – faster for reloading

Binary serialization should be transparent
– User-controlled on/off switch: Env. Var.
– Granularity:

• One binary cache file per library / executable
• Per logical sub-library of Dyninst

– Checksum-based cache invalidation
• Rebuild a binary’s cache when it changes

– Example: libc is large and expensive to fully
analyze, but it seldom changes

University of Maryland

Serialization policy

Two phase strategy
– (1) Bulk serialization of always required internal state

• Straightforward structured I/O
– (2) Incremental serialization of incremental state

• Somewhat trickier
• No specific orderings allowed

University of Maryland

Review: Why XML Serialization?
Create standardized representations for
– Basic symbol table information
– Abstract program objects

• Functions, loops, blocks….
– More complex binary analyses

• CFG, Data Slicing, etc…
Exports Dyninst’s expertise for easy use by
– Other tools
– Interfacing the textual world

• Parse-able snapshots of programs
– Cross-platform aggregation of results

Allows Dyninst to use output from other tools
in its own analyses

University of Maryland

Why Binary Serialization?

Large Binaries
– Some existing Dyninst analyses taking a prohibitively long

time for large binaries (100s of MB)
• Eg. Full CFG analysis of large statically programs

More complex analyses are in the works
– Dyninst continues to add more complex features

• Control Flow Graphs
• Data Slicing
• Stripped binary analysis

– Complex tools that use these analyses may find them
cost-prohibitive

• If they have to be re-performed every time the tool is run
• Why not just save them?

University of Maryland

Speedup from Bulk Structured I/O

Results for symtabAPI

3.9x2300195089002 x 105

3.4x2101487302 x 104

2.6x26 ms24 ms68 ms2 x 103

Parse
Speedup

Deserialize
Time

Serialize
Time

Regular
Parse Time

Symbols

Not exactly a “real world” problem
– Verified scaling under a controlled situation
– Computer-generated programs

• with identical characteristics
• except # symbols

– Expect greater time savings with more complex
analyses

University of Maryland

On-Demand Analyses

Dyninst generates much of its internal state
on-demand of API user
– Phase 1 serialization better suited to a known, fixed

set of internal state
• existing by-default
• Still useful, but needs augmentation

“Structural” solution to on-demand data
– Ideally want an “automatic” solution

• Do an analysis, then…
• Serialization should happen transparently

Uses Annotation framework
– Reepresenting “optional” data
– Perfect fit for the representation of on-demand

analyses

University of Maryland

Serializing Annotations

Basic Parameters
– Not all Annotations will be serialized

• Does not make sense for all cases
– parameters controls serialization policy

Serialization is structural
– Performed when annotation is added
– Serialization parameters for annotation:

• Just enough information to reconstruct
– Annotatee ID

– ”this” Pointer suffices
– Annotation Name

– Annotation Type is determined by Name

University of Maryland

Example: Serialize Line Information
class Module : public

Line Information:
•Part of SymtabAPI

•Belongs to class Module
•Exists only on-demand

Annotatable<LineInformation,

“line_info”, true>

class LineInfo {

vector<tuple>

};

University of Maryland

Example: Serialize Line Information
class Module : public

addAnnotation(LineInfo *)
•Marks entry in static annotation map

Annotatable<LineInformation,

“line_info”, true>

class LineInfo {

vector<tuple>

};

University of Maryland

Example: Serialize Line Information
class Module : public

anno->serialize(LineInfo *)

f.binTranslator toBin

•First output Annotation Information

•append (f.bin)
•Start_annotation(f)
•Out_val(an_type)
•Out_val(par_id)

<Annotation>
<AnnoType> an_type

</AnnoType>
<Annotatee ID> par_id

</Annotatee ID>

•Just enough for full reconstruction
•Annotation Type
•ID of Parent

Annotatable<LineInformation,

“line_info”, true>

class LineInfo {

vector<tuple>

};

University of Maryland

Example: Serialize Line Information
class Module : public

anno->serialize(LineInfo *)

f.binTranslator toBin

•Finally Translate LineInformation

•append (f.bin)
•Start_annotation(f)
•Out_val(an_type)
•Out_val(par_id)
•Out (line_info)

<Annotation>
<AnnoType> an_type
</AnnoType>
<Annotatee ID> par_id
</Annotatee ID>
<LineInformation>

<num_entries> num
</num_entries>
<Tuple>
<file> f1 </file>
<line> ln </line>
<offset> off </offset>

</Tuple>

<Tuple>
</Tuple>

</LineInformation>
</Annotation>

•Using ordinary hierarchical I/O
translation routine

•Foreach (tuple)
• out (tuple)

Annotatable<LineInformation,

“line_info”, true>

class LineInfo {

vector<tuple>

};

University of Maryland

Deserializing Annotations
Basic Parameters
– Need to construct new object given:

• Annotatee ID
– Build a working map between serialized Annotatee

IDs and rebuilt Annotatable Objects
• Annotation Type

– Maintain static map between Annotation Type and
deserialization function

Deserialization sequence
– Read Annotation Type
– Read Annotatee ID
– Lookup/call constructor for Annotation Type
– Deserialize Annotation Object
– Lookup Annotatee and re-annotate

University of Maryland

Summary

Annotation Framework
– Status: Designed, at implementation stage
– Unifies the way objects are annotated
– Slicing will be the first user

Annotations provide a natural way to
serialize
– External API provides users a way to attach

arbitrary information to Dyninst class instances
– Other uses still pending

• Still flexible until other uses are resolved

