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External Components

Current external components used by O|SS:
" Dyninst, symtabAPI, MRNet, [DPCL]
= SQLite, Python, QT, PAPI
" libelf, libdwarf, libmonitor, libunwind
" xdr, libbfd, libopcodes, binutils
" vampirtrace

" In process: mpiP, Javelina

" Future: perfmon2, LaunchMON, stackwalkerAPI
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Current OSS provided components

" Framework component Interfaces:

" Instrumentors: MRNet, DPCL, Offline (libmonitor:
LD_PRELOAD, static relinking)

= Database (SQL based interface, SQLite implemented)

" Base tool API (Process state, Access Data)

" Command Line component Interfaces:

" Python scripting, CLI interactive , GUI interface
" Process CLI commands that drive component/tool

" Interface with framework component

" Interface with view/collector client plugin




Current OSS components available

" Runtime support component Interfaces:

" API for runtime collector components/plugins

" Plugin components (coliector, view, ui) Interfaces:

= Collector (pcsamp, usertime, hwe, hwctime, io, iot, fpe, mpi, mpit, mpiotf)
" Runtime support API
" MRNet/DPCL daemon API

= Views

= Database API & CLI View API
" GUI (Panels/Wizards)

" CLI command interface (Commands)




Future O|SS Structure

" Goal
" Highly scalable individual components
" Generalized API for each component
" Reassemble the components into new O|SS

" Create other tools by assembling components
" Path to the Goal

" Re-engineer O|SS-centric components
" Take out O|SS specific hooks

" Decompose components to be free standing

" Generalize APIs
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External components wanted

Components we would like to use:
" Binary rewriter

" Highly scalable distributed data transport/storage

" Graphical view with well defined API to specify the data
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Issues using external components

The good:
" You don’t have to reinvent the wheel!
" Big win: usually!

" Example: Integrating vampirtrace into O|SS to get OTF
capability

The not so good:

" Components are constantly changing (APIs, library
Interfaces)

" Most likely don't have control over the changes




Po— | - - -
EXperience integrating vampirtrace

" Integration into offline version

" Mainly configuration issues building multiple MPI
Implementation versions

" Integration into dynamic online version
" Move MPI dependent routines in vt to collector
" Compile into each MPI Implementation dependent collector

" Complicated due to fact we stop in MPL_Init to attach to
all MPI ranked processes

" vampirtrace initialization is done in MPL_Init

" Separated out the init routine from vt code and executed it as
one time code snippet.
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Questions?

Jim Galarowicz
jeg@krellinst.org

Krell Institute
http://www.krellinst.org




