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  Talk Outline

 O|SS Internal Structure

 External components used by O|SS

 Current components provided by O|SS

 Future components and O|SS structure

 External components wanted

 Experience integrating vampirtrace

 Questions
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External Components 

Current external components used by O|SS:

 Dyninst, symtabAPI, MRNet, [DPCL]

 SQLite, Python, QT, PAPI

 libelf, libdwarf, libmonitor, libunwind

 xdr, libbfd, libopcodes, binutils

 vampirtrace

 In process: mpiP, Javelina

 Future: perfmon2, LaunchMON, stackwalkerAPI



Framework Component
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CLI Component
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Current OSS provided components

 Framework component Interfaces:

 Instrumentors: MRNet, DPCL, Offline (libmonitor: 
LD_PRELOAD, static relinking)

 Database (SQL based interface, SQLite implemented)

 Base tool API (Process state, Access Data)

 Command Line component Interfaces:

 Python scripting, CLI interactive , GUI interface

 Process CLI commands that drive component/tool

 Interface with framework component

 Interface with view/collector client plugin
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 Current OSS components available

 Runtime support component Interfaces:

 API for runtime collector components/plugins

 Plugin components (Collector, View, GUI) Interfaces:

 Collector (pcsamp, usertime, hwc, hwctime, io, iot, fpe, mpi, mpit, mpiotf)

 Runtime support API

 MRNet/DPCL daemon API

 Views

 Database API & CLI View API

 GUI (Panels/Wizards)

 CLI command interface (Commands)
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 Future O|SS Structure
 Goal

 Highly scalable individual components

 Generalized API for each component

 Reassemble the components into new O|SS

 Create other tools by assembling components 

 Path to the Goal

 Re-engineer O|SS-centric components

 Take out O|SS specific hooks

 Decompose components to be free standing

 Generalize APIs
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 Future OSS components and structure
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External components wanted
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Components we would like to use:

 Binary rewriter

 Highly scalable distributed data transport/storage

 Graphical view with well defined API to specify the data



Issues using external components
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The good:

 You don’t have to reinvent the wheel!

 Big win: usually!

 Example: Integrating vampirtrace into O|SS to get OTF 

capability

The not so good:

 Components are constantly changing (APIs, library 

interfaces)

 Most likely don't have control over the changes



Experience integrating vampirtrace
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 Integration into offline version 

 Mainly configuration issues building multiple MPI 
implementation versions

 Integration into dynamic online version

 Move MPI dependent routines in vt to collector

 Compile into each MPI Implementation dependent collector

 Complicated due to fact we stop in MPI_Init to attach to 
all MPI ranked processes

 vampirtrace initialization is done in MPI_Init

 Separated out the init routine from vt code and executed it as 
one time code snippet.  



Questions?

Jim Galarowicz

jeg@krellinst.org

Krell Institute

http://www.krellinst.org
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