
1

 Open Source Performance Analysis for Large Scale Systems

Generalizing Components

from

Open|SpeedShop

Workshop on Performance Tools for

Petascale Computing

 July 21, 2008

Jim Galarowicz, Krell Institute
2

 Talk Outline

 O|SS Internal Structure

 External components used by O|SS

 Current components provided by O|SS

 Future components and O|SS structure

 External components wanted

 Experience integrating vampirtrace

 Questions
3

Open|SpeedShop Overview

MPI Application

O|SS

post-
mortem

libmonitor
MPI Application

O|SS

DPCL
MPI Application

O|SS

MRNet
Dynamic/OnlineOffline

View
Plugin

Wizard
Plugin

Panel
Plugin

Open|SpeedShop Internal
Structure

QT
Python

Base Tool Layer

DPCL

S
Q
L
i
t
e

Execution Environment

Instrumentation

GUIpyO|SS

Data Abstraction

CLI

User Interface Access

Collector
Plugin

MRNet libmonitor

Collector

Instrumentor

Framework Open Source Plugins

Dyninst

Wizard
Plugin

Execution Environment

Collector
Plugin

View
Plugin

Panel
Plugin

Instrumentor

Data Abstraction

CLI

SQL
Database

Plugin Data Flow

External Components

Current external components used by O|SS:

 Dyninst, symtabAPI, MRNet, [DPCL]

 SQLite, Python, QT, PAPI

 libelf, libdwarf, libmonitor, libunwind

 xdr, libbfd, libopcodes, binutils

 vampirtrace

 In process: mpiP, Javelina

 Future: perfmon2, LaunchMON, stackwalkerAPI

Framework Component

8

Framework
CLI Requests

D
P
C

L R
e
q
u
e
sts

M
R

N
e
t R

e
q
u
e
sts

lib
m

o
n
ito

r
Instrumentor API

D
a
ta

b
a
se

 A
P
I

PerfData/Responses

D
P

C
L
 R

e
s
p

o
n

s
e
s

M
R

N
e
t R

e
s
p

o
n

s
e
s

lib
m

o
n

ito
r c

a
llb

a
c
k
s

PerfData/Responses

DB Queries/Requests

B
a
se

 T
o
o
l
A

P
I

CLI Component

9

Command Line
Interface

CLI Comands

Client View/Collector
API

B
a
se

 T
o
o
l A

P
I

CLI command
output

Framework Responses

Framework Requests

C
o
m

m
a
n
d

P
ro

ce
ss

in
g

V
ie

w
 R

e
q

u
e
s
ts

R
e
s
p

o
n

s
e
s
 to

 R
e
q

.

G
U

I
o
r

C
LI

 o
r

P
y
th

o
n

A
P
I

Current OSS provided components

 Framework component Interfaces:

 Instrumentors: MRNet, DPCL, Offline (libmonitor:
LD_PRELOAD, static relinking)

 Database (SQL based interface, SQLite implemented)

 Base tool API (Process state, Access Data)

 Command Line component Interfaces:

 Python scripting, CLI interactive , GUI interface

 Process CLI commands that drive component/tool

 Interface with framework component

 Interface with view/collector client plugin

10

 Current OSS components available

 Runtime support component Interfaces:

 API for runtime collector components/plugins

 Plugin components (Collector, View, GUI) Interfaces:

 Collector (pcsamp, usertime, hwc, hwctime, io, iot, fpe, mpi, mpit, mpiotf)

 Runtime support API

 MRNet/DPCL daemon API

 Views

 Database API & CLI View API

 GUI (Panels/Wizards)

 CLI command interface (Commands)
11

 Future O|SS Structure
 Goal

 Highly scalable individual components

 Generalized API for each component

 Reassemble the components into new O|SS

 Create other tools by assembling components

 Path to the Goal

 Re-engineer O|SS-centric components

 Take out O|SS specific hooks

 Decompose components to be free standing

 Generalize APIs
12

 Future OSS components and structure

13

External components wanted

14

Components we would like to use:

 Binary rewriter

 Highly scalable distributed data transport/storage

 Graphical view with well defined API to specify the data

Issues using external components

15

The good:

 You don’t have to reinvent the wheel!

 Big win: usually!

 Example: Integrating vampirtrace into O|SS to get OTF

capability

The not so good:

 Components are constantly changing (APIs, library

interfaces)

 Most likely don't have control over the changes

Experience integrating vampirtrace

16

 Integration into offline version

 Mainly configuration issues building multiple MPI
implementation versions

 Integration into dynamic online version

 Move MPI dependent routines in vt to collector

 Compile into each MPI Implementation dependent collector

 Complicated due to fact we stop in MPI_Init to attach to
all MPI ranked processes

 vampirtrace initialization is done in MPI_Init

 Separated out the init routine from vt code and executed it as
one time code snippet.

Questions?

Jim Galarowicz

jeg@krellinst.org

Krell Institute

http://www.krellinst.org

17

