

SpeedShop’

Open Source Performance Analysis for Large Scale Systems

Generalizing Components
from
Open|SpeedShop

Workshop on Performance Tools for
Petascale Computing

July 21, 2008

Jim Galarowicz, Krell Institute

r\.__./KRE_L“L | .
Talk Outline

O|SS Internal Structure

External components used by O|SS
Current components provided by O|SS
Future components and O|SS structure
External components wanted

Experience integrating vampirtrace

Questions

Open|SpeedShop Overview

libmonitor DPCL MRNet
APPIUC O C APPUC
% ¢ 9
. “.post

o — —
0SS 0SS 0SS

Open|SpeedShop Internal

Structure Iiza.r
ugi

pyO|SS cLI GUI Panel

User Interface Access
Data Abstraction

. Base Tool Layer
Collector

Plugin Collector

Instrumentor

DPCL MRNet libmonitor

Dyninst
Execution Environment

Instrumentation || Framework Plugins

SQL
Data Abstraction =% Database

Instrumentor

Execution Environment

External Components

Current external components used by O|SS:
" Dyninst, symtabAPI, MRNet, [DPCL]
= SQLite, Python, QT, PAPI
" libelf, libdwarf, libmonitor, libunwind
" xdr, libbfd, libopcodes, binutils
" vampirtrace

" In process: mpiP, Javelina

" Future: perfmon2, LaunchMON, stackwalkerAPI

- Framework Component

(7 -~
o
< 5
CLI Requests > g 6)" DB Queries/Requests>
O
"~ | Framework |2 |4
)) PerfData/Responses
<PerfData/Responses © \
Ak >
— N B
{ Instrumentor API 7/\

)

S1Sonbay 1IONYIN

%

J1031UOWIq]]

S1senbay 10dd

sasuodsay 17dda

<

sypeqj|ed Jojyuowqi|

s9suodsay }9NY

<

<

GUI or CLI or Python
API

CLI Comands>

CLI Component

~\

Command Line
Interface

CLI command
output

[

7 Command

Client VIeW/COIIeCtOF]

Framework Requests>

<Framework Responses

\[IdV 1001 9seg }/

4\

sisanbay maip

e
(]
0n
O
o
=
0
(]
0]
r+
o
~
1]
Ke)

Current OSS provided components

" Framework component Interfaces:

" Instrumentors: MRNet, DPCL, Offline (libmonitor:
LD_PRELOAD, static relinking)

= Database (SQL based interface, SQLite implemented)

" Base tool API (Process state, Access Data)

" Command Line component Interfaces:

" Python scripting, CLI interactive , GUI interface
" Process CLI commands that drive component/tool

" Interface with framework component

" Interface with view/collector client plugin

Current OSS components available

" Runtime support component Interfaces:

" API for runtime collector components/plugins

" Plugin components (coliector, view, ui) Interfaces:

= Collector (pcsamp, usertime, hwe, hwctime, io, iot, fpe, mpi, mpit, mpiotf)
" Runtime support API
" MRNet/DPCL daemon API

= Views

= Database API & CLI View API
" GUI (Panels/Wizards)

" CLI command interface (Commands)

Future O|SS Structure

" Goal
" Highly scalable individual components
" Generalized API for each component
" Reassemble the components into new O|SS

" Create other tools by assembling components
" Path to the Goal

" Re-engineer O|SS-centric components
" Take out O|SS specific hooks

" Decompose components to be free standing

" Generalize APIs

I
“

Lean : 0|SS GUI
=) Environment |~ ' :
& . Collectors Experiment [Y (_Pane! Piugin |

- / CLIP \
% Profilers 2 o Management el |
; k,ollector Plugir}j Tree-based [Analy_sis J \[View Plugin]j Python
(_ | Aggregation |\ Plugin_J ! Module
-f-':: E;OTracers ,i \[Aggr. Plugin] Y i (Batch
O llector Plugi ' . :
' o Distributed Storage L REessing
3 ' a a '
=i _libMonitor : : QT 4
= PAPI MRNet | Python Python

Dyninst SQLite Babel
: Performance Analysis Pipeline
Data | Data . Experiment : Command Result

Acquisition Collection Management Processing Presentation

r:/ KR E_ L“L
External components wanted

Components we would like to use:
" Binary rewriter

" Highly scalable distributed data transport/storage

" Graphical view with well defined API to specify the data

Y/ KRELL]
Issues using external components

The good:
" You don’t have to reinvent the wheel!
" Big win: usually!

" Example: Integrating vampirtrace into O|SS to get OTF
capability

The not so good:

" Components are constantly changing (APIs, library
Interfaces)

" Most likely don't have control over the changes

Po— | - - -
EXperience integrating vampirtrace

" Integration into offline version

" Mainly configuration issues building multiple MPI
Implementation versions

" Integration into dynamic online version
" Move MPI dependent routines in vt to collector
" Compile into each MPI Implementation dependent collector

" Complicated due to fact we stop in MPL_Init to attach to
all MPI ranked processes

" vampirtrace initialization is done in MPL_Init

" Separated out the init routine from vt code and executed it as
one time code snippet.

.

K_.R E_LTL
Questions?

Jim Galarowicz
jeg@krellinst.org

Krell Institute
http://www.krellinst.org

