Comparative Visualization and Transfer Functions for Time-Varying Data

> Jon Woodring Los Alamos National Laboratory <u>woodring@lanl.gov</u>

> > **CScADS 2009**

## A Little Background

- My dissertation at The Ohio State University with Han-Wei Shen
- A caveat (the graduate student dilemma):
  - Most of the visualization techniques shown here aren't in an vis package ☺
  - Though I want them to be!
  - The last method has a downloadable tool, though!

#### **Problem Statement**

- Time varying visualization for scientific or medical data has typically been done with animation and/or time step still renders
- Difficult to do precise visual analysis, to understand quantitative – actual value – differences over space, time, and trends
  - Perceptual issues
  - Lack of knowledge
  - Hard to make a transfer function

## Differences – Worst Case



## Animation – Memory



## Count the Passes



## **Classifying Time Data**

- What values do the time series data have over time? (quantitative rather than qualitative)
  - What are the value ranges over a time period?
  - What other data points or features share the same value or have different?
  - What are the trends across time scales?
- Transfer functions for temporal data is hard
  - Which values and data points should we classify over time?
  - How to classify them over time? (changing ranges)

## **Comparative Fusion**

 Combine multiple time steps into a single static data set, provides context and the ability to make value and space comparisons





## **Comparative Trends**

 Activity/curve/value representation allows for quantitative trend knowledge, similarity and differences of value over time



#### **Using Trends for Transfer Functions**

 Analyze the trends in a time-varying data set for automatic classification for transfer function generation







# Chronophotography



#### Chronovolumes

 Visually compare time steps by combining several time steps into one volume





## 2D Analogy

project through time (reduction operator)

> compose multiple time steps (arbitrary operations)

## **Comparison Methods**

- High Dimensional Projection
  - 4D (space + time) reduction to 3D along a 4D ray
- Composition
  - Combination of operators and queries





## **Example Operations**

Alpha composition

Average

Min



Additive color



XOR

OUT







## Intermission – Motion (Animation) as a Focus



### **Comparative Trend Visualization**

- Focus on exploration of trends and activity by analysis and more quantitative visualization
- The assumption is that data points that behave similarly (value coherence over time) belong to the same class of data



## Time Activity Curve (TAC)

- Represent data points as time series curves
  - Also known as TAC vectors in sci vis literature
  - A TAC vector is a data point (point in space) representing data values over time at that point



## **Classifying Trends**

 Treat data within a time window (or the entire series) as TAC vectors (time ordered series of values) and apply vector clustering (k-means, SOM, PCA, MDS, hierarchical, etc.) to classify



#### **Classes across Different Time Scales**

- Temporal activity can happen at different time scales
  - Short term scale: daily or monthly weather
  - Long term scale: yearly or decadal weather
- Activity classes are clustered by time scale
  - Use filter banks to pass-band filter the TACs into different time scales and then cluster by scale
  - Data points are separately classified in each time scale, thus different trends are identified

## **Comparative Trend Visualization**

time scale



#### similarity culled



## **Showing Some Trends**

















## Animation Rescaling via TAC Centroid



## Using Trends for Semi-Automatic Transfer Function Generation

31538.290

Static transfer function





Automatic method



Early time step



Late time step

## In Animation



## Using Trend Classification for Moving Wavefronts

- The trend clustering method works well for classifying stationary features (climate regions, an earthquake basin), but not very well for moving data, like a wave
- Using the trend clustering for a moving wave (if it has such a feature) segments the data into into subspaces the wave passes through over time
- Each spatial region represents a wave front entering and exiting a region of space at a particular point in time





## **Identifying Wave Values**

- The data points (spatial area) that comprise the wavefront have similar value behavior for a short period as the wave moves through a region of space
- As a wave moves in space, data points that contain the wave at a point in time, will have a similar trend to a set of data points, in near future and near past



## Formulating the Classification

- Identify the trends that occur over a short period for a time step for every time step
- Match temporal trend clusters into a sequence of similar trends over time



## **Cluster and Sequence UI**





An animation using a selected sequence turned into a transfer function

### Different Types of Transfer Functions



**Dynamic Color** 



**Dynamic Opacity** 



Static color



## Spatial Masking



## **Downloadable Implementation**

- <u>http://www.cse.ohio-</u> <u>state.edu/~hwshen/Research/Gravity/Download.</u> <u>html</u>
  - Cluster data
  - Sequence clusters
  - Visualize sequences and clusters
  - Output a text color table/map(s)
  - Parallel (MPI) and serial implementation

### **Current Work**

- Distance visualization issues (simulation data at ORNL, scientist at LANL)
- Biology (AIDS phylogeny tree visualization)
- Petascale/exascale (extreme? ultra?) scale visualization
- Cyber security visualization (infovis)
- Personal future wishlist
  - Put my time-varying visualization methods into VTK and/or ParaView
  - More research into extending time-varying visualization and analysis