This work is funded in part through a U.S. National Science Foundation, Information Technology Research program grant
Outline

• The supercomputing/analysis workflow is broken!
• VAPOR and its approach to handling massive data
• VAPOR visualization and analysis capabilities
 – Seven techniques useful for interactive data understanding
• Demo:
 – Understanding high-resolution hurricane dynamics
• VAPOR’s second generation data model for petascale applications
• Research efforts for petascale visualization
Alan Norton (vapor@ucar.edu)
Typical Analysis/Vis Workflow

Supercomputing → Temp Disk → Archive

Offline processing:
Analysis and Visualization → Analysis Repository
Archival is not keeping up

- Supercomputer sustained computation rate is doubling every 12-15 months
- Archive storage capacity is doubling every 25-26 months
- Fraction of data saved for analysis halves every ~2 years.
Visualization and Analysis are limited by I/O

Performance improvements for I/O 1977-2005, compared with computation rate improvements

Source: DARPA HPCS I/O presentation

Alan Norton (vapor@ucar.edu)
Insufficient capacity, speed

Only infrequent archival

Takes days or weeks

Insufficient speed For interactivity

Only for small samples, statistics

Supercomputing

Temp Disk

Archive

Analysis and Visualization

Analysis Repository

Offline processing:
Implications for Visualization and Analysis of Petascale computations

Two serious problems:

- Smaller portion of data is available for analysis because of limited storage and archive capacity.
- Analysis and visualization of the available data becomes non-interactive due to limited IO rates

Result: Loss of scientific productivity

[Numerical] models that can currently be run on typical supercomputing platforms produce data in amounts that make storage expensive, movement cumbersome, visualization difficult, and detailed analysis impossible. The result is a significantly reduced scientific return from the nation's largest computational efforts.

Mark Rast
University of Colorado, LASP
What can be done to maximize value from supercomputing?

- **Save more intelligently**
 - Save only the most significant events
 - Save decimated or compressed data
 - Feature identification
 - Feature tracking
 - Use machine learning
 - Backup and rerun

- **Improve interactivity of analysis and visualization**
 - Exploit GPU’s
 - Multi-resolution access
 - Provide tools customized to scientific needs
The VAPOR project is intended to address the problem of datasets that are becoming too big to analyze and visualize interactively

- **VAPOR** is the **Visualization and Analysis Platform for Oceanic, atmospheric and solar Research**
- **Goal**: Enable scientists to *interactively* analyze and visualize massive datasets resulting from fluid dynamics simulation
- **Domain focus**: 2D and 3D, gridded, time-varying turbulence datasets, especially earth-science simulation output.
- **Essential features:**
 - Multi-resolution data representation for accelerated data access
 - Exploits GPU for accelerated rendering
 - Interactive user interface for scientific visual data exploration
Wavelet transforms for 3D multiresolution data representation

• Some wavelet properties:
 – Permit hierarchical data representation
 – Invertible and lossless (subject to floating point round off errors)
 – Numerically efficient ($O(n)$)
 • forward and inverse transform
 – No additional storage cost
VAPOR capabilities (newest version 1.5)

Emphasis is on ease-of-use for fluid dynamics research

- All tools perform interactively, exploiting multi-resolution representation
- GPU-accelerated interactive graphics
 - Volume rendering
 - Isosurfaces
- Flow integration
 - Interactive streamlines and path lines
 - Field line advection
- Data probing and contour planes
- Support for WRF and terrain-following grids
- Geo-referenced image support
- Bidirectional integration with IDL® for analysis

Alan Norton (vapor@ucar.edu)
How VAPOR differs from other visualization platforms

• Multi-resolution data representation
 – To enable interactive display and analysis of terabyte datasets
• Coupled with analysis toolkit (IDL®)
• Intended to be used by scientists, not visualization engineers
 – Requirements defined by a steering committee of scientists
• Narrow focus: turbulence simulation on gridded domains
• Not built on existing visualization libraries (e.g. VTK)
• Emphasis on desktop/laptop platforms; no parallel implementation
Interaction Techniques for understanding turbulence data with VAPOR

Interactive feedback is key to visual data understanding

1. **Multi-resolution** data browsing
 - Enables interactive navigation of very large data

2. **Visual color and transparency editing**
 - Interactively control color and opacity to identify features of interest

3. **Export/import data** to/from analysis toolkit
 - Currently supporting IDL®

4. Use planar probe for **visual flow seed positioning**
 - Local data values guide seed placement

5. Animate flow with **image-based flow visualization**

6. **Track evolving structures** with field line advection
 - Animate field lines to understand time-evolution of structures

7. **Use the GPU** for interactive rendering
 - Accelerate volume rendering, isosurfaces on Cartesian or spherical grids

Alan Norton (vapor@ucar.edu)
Interaction Technique 1: Multiresolution data browsing

Enabled by wavelet data representation
- Interactively visualize full data at low resolution
- Zoom in, increase resolution for detailed understanding

P. Mininni, current roll

Alan Norton (vapor@ucar.edu)
Interaction Technique 2: Visual color/transparency editing

Design developed with Mark Rast

- Drag control points to define opacity and color mapping
- Histogram used to guide placement
- Continuous visual feedback in 3D scene
Interaction Technique 3: Export/import data to/from analysis toolkit

Currently using IDL®

- User specifies region to export to IDL session
- IDL performs operations on specified region in IDL
- Results imported as new variables in VAPOR
Interaction Technique 4: Use planar probe for visual flow seed placement

Useful to place flow seeds based on local data values

- Planar probe provides cursor for precise placement in 3D
- Field lines are immediately reconstructed as seeds are specified

Data provided by Mark Rast

Alan Norton (vapor@ucar.edu)
Interaction Technique 5:
Visualize flow in animated planar sections

- Implements “Image Based Flow Visualization” technique of Jarke Van Wyck
- Spot noise pattern advected in planar projection of velocity field, results blended into successive images.
- Vortices in cross-section of hurricane eye-wall:

Data provided by Yongsheng Chen

Alan Norton (vapor@ucar.edu)
Interaction Technique 6: Track evolving structures with field line advection

Animates field lines in velocity field
- Useful for tracking evolution of geometric structures (e.g. vorticity field lines in tornado)
- Based on algorithm proposed by Aake Nordlund

Data provided by P. Mininni
Interaction Technique 6:
Track evolving structures with field line advection

Animates field lines in velocity field

- Useful for tracking evolution of geometric structures (e.g. vorticity field lines in tornado)
- Based on algorithm proposed by Aake Nordlund

Data provided by P. Mininni

Alan Norton (vapor@ucar.edu)
Field Line Advection: how it works

- Enables animation of magnetic field lines in a velocity field
- Algorithm proposed by Aake Nordlund:
 - Start with seed point S at an initial time step
 1. Construct field line through S
 2. Find point P along field line having maximal field strength
 3. Time-advect P to subsequent time step, resulting in new seed point S'
 - Repeat steps 1-3 for each additional time step
Interaction Technique 7: Use the GPU for interactive rendering

• Exploit modern GPU’s for accelerated rendering
 – GPU’s are SIMD clusters, efficiently traverse data arrays
 – Support for Cartesian, spherical, terrain-following grids

B. Brown, Solar MHD simulation
T. Prabhakaran, April 2007 cold event in WRF

Alan Norton (vapor@ucar.edu)
MHD exploration DEMO

Small scale structures in MHD turbulence with high Reynolds number

- Data from Pablo Mininni, NCAR
- 1536x1536x1536 volume, 16 variables (216 GB per timestep)
- Scientific goal: understand MHD flow dynamics at high resolution and high Reynolds no.
- Analysis and visualization performed with VAPOR and IDL
- Resulted in discovery of intertwining current sheets (“current rolls”)

Alan Norton (vapor@ucar.edu)
Use field line advection to track structural changes

- Subsequent work investigated evolution of current roll using field line advection
- FLA follows magnetic field lines, tracking structural changes

P. Mininni et al., NJP 2008

Alan Norton (vapor@ucar.edu)
High-res hurricane analysis demo

Visualization was used to understand the nature of increased turbulence along eye-wall

• Unsteady flow shows overall wind dynamics
• VAPOR’s IBFV tool is used to identify horizontally oriented transient vortex tubes near the ocean surface
• Using VAPOR’s field line advection, these vortices can be tracked and animated over time

Alan Norton (vapor@ucar.edu)
VAPOR plans for Petascale computation

- VAPOR’s existing multi-scale model is useful in terascale, but not sufficient for petascale apps
- We are planning an improved data model in VAPOR
 - Want a reduction factor of 100 or more in I/O for visualization and analysis
 - Use wavelet compression/decompression using wavelet families that efficiently compress turbulence data
 - Data access model must be designed to work efficiently in the petascale analysis/visualization workflow
- J. Clyne: Analyzing design choices, e.g.:
 - Choice of wavelet
 - Data blocking (needed for efficient access)
 - Coefficient prioritization
 - Boundary extension method

Alan Norton (vapor@ucar.edu)
64-way volume compression of salt density in Smyth’s salt infusion results

original

64-fold averaged with Haar
John Clyne (vapor@ucar.edu)

64-fold compress biorth spline
512-way compression of Mininni’s MHD data

- Original
- 512-way compressed using biortho spline wavelets
- 512-way Haar averaging
Next generation plans and requirements

• We are preparing a second generation of multi-scale infrastructure for an upcoming release of VAPOR.

• Requirements include:
 – Efficient coefficient database structure must enable prioritized access and must exploit locality
 – Optimal wavelet compression performance can depend on type of data, choice of wavelet
 – Must tolerate coded values (e.g. “fill_value”) that can interfere with compression
 – Wavelet processing must operate efficiently with petascale apps
Desired workflow using wavelet compression

- Data can be interactively analyzed and visualized, during and after simulation.
- Intermediate times are available compressed

Monitoring wavelet-compressed results

- Rapid retrieval of requested data

Remote visualization sessions supported

Alan Norton (vapor@ucar.edu)
Research efforts for improving analysis in petascale computation

Two experimental VAPOR extensions for facilitating visual understanding of petascale computation.

General need: Enable interactive analysis when I/O constraints prohibit exhaustive search or visualization of full data sets

• Feature identification (K. Gruchalla, M. Rast)
 – Interactively search for features of interest in massive data volumes, based on statistical properties

• Feature tracking (P. Mininni)
 – When an important feature has been discovered at a specific time, extract only the data needed to advect this feature (forward and backward in time), without examining the full volume at all time steps.

Alan Norton (vapor@ucar.edu)
Feature Identification (K. Gruchalla)

- Use a multidimensional transfer function to identify and select structures of interest
- Connected component analysis isolates these structures.
- Local statistical measures used to classify dynamics
Region advection for Feature tracking (P. Mininni)

• Problem: Simulation output can only be infrequently saved. Retrieval and examination of full data at multiple time steps is too time-consuming

• Proposed approach:
 – Identify feature of interest in small region
 – Determine motion of feature, based on appropriate mathematical model
 – Apply field line advection algorithm to advect feature
 – Retrieve data at other time-steps, restricted to the time-varying volume associated with the advected region.

Alan Norton (vapor@ucar.edu)
VAPOR plans

VAPOR’s steering committee and other users help prioritize features, with releases every 6-9 months

• Vapor 1.5 is being prepared for release

Some high priority features for an upcoming release:

• Next-generation data model for petascale:
 – Compression support
 – Prioritized data access
 – Parallel conversion

• Built-in expression calculator

• Animation control

• Extensible architecture

• Direct import of data

Alan Norton (vapor@ucar.edu)
Summary

• VAPOR is designed to enable interactive visualization and analysis of massive datasets by exploiting the wavelet multi-scale representation.
• VAPOR supports a variety of useful interactive techniques for investigating and visualizing data, based on needs expressed by scientific users.
• We are developing improvements to VAPOR to enable interactive access to petabyte datasets, and to support anticipated petascale workflows.

Alan Norton (vapor@ucar.edu)
VAPOR Availability

• Version 1.5.0 preparing for release (momentarily!)
 – Version 1.4.2 available on Website
• Runs on Linux, Windows, Mac
• System requirements:
 – a modern (nVidia or ATI) graphics card (available for about $200)
 – ~1GB of memory
• Software dependencies
 – IDL® http://www.ittvis.com/ (only for interactive analysis)
• Executables, documentation available (free) at
 http://www.vapor.ucar.edu/
• Source code, feature requests, etc. at
 http://sourceforge.net/projects/vapor

Alan Norton (vapor@ucar.edu)
Acknowledgements

- Steering Committee
 - Nic Brummell - CU
 - Yuhong Fan - NCAR, HAO
 - Aimé Fournier – NCAR, IMAGe
 - Pablo Mininni, NCAR, IMAGe
 - Aake Nordlund, University of Copenhagen
 - Helene Politano - Observatoire de la Cote d'Azur
 - Yannick Ponty - Observatoire de la Cote d'Azur
 - Annick Pouquet - NCAR, ESSL
 - Mark Rast - CU
 - Duane Rosenberg - NCAR, IMAGe
 - Matthias Rempel - NCAR, HAO
 - Geoff Vasil, CU
 - Thara Phrabhakaran, IITM
 - Gerry Creager, TAMU
 - Leigh Orf, Central Mich. U.

- WRF consultation
 - Wei Wang – NCAR, MMM
 - Cindy Bruyere –NCAR, MMM
 - Yongsheng Chen - NCAR, MMM
 - Wei Huang – NCAR, CISL

- Developers
 - John Clyne – NCAR, CISL
 - Alan Norton – NCAR, CISL
 - Kenny Gruchalla – CU
 - Victor Snyder – CSM
 - Rick Brownrigg – NCAR, CISL
 - Pam Gillman – NCAR, CISL

- Research Collaborators
 - Kwan-Liu Ma, U.C. Davis
 - Hiroshi Akiba, U.C. Davis
 - Han-Wei Shen, Ohio State
 - Liya Li, Ohio State

- Systems Support
 - Joey Mendoza, NCAR, CISL

Alan Norton (vapor@ucar.edu)
Questions?

Alan Norton (vapor@ucar.edu)