Massively Parallel simulation of combustion in Gas Turbines
European Centre for Research and Advanced Training in Scientific Computation

- Electromagnetism
- Global Change and Climate Modeling
- Aviation and Environment
- Parallel Algorithms
- CFD:
 - Aerodynamics
 - Combustion
Objectives

- Perform 360° full combustion chamber simulation for current R&D challenges in Gas turbines:
 - Thermo-acoustic Instabilities
 - Quenching
 - Ignition / Re-ignition
Ignition
CERFACS's code : AVBP

- Massively parallel : MPI / Fortran (with C allocations)
- Large Eddy Simulations approach:
- Compressible
 - AIAA J. May 2004
- 3rd order space and time accuracy
- Thickened flame model
- Hybrid grids and unstructured meshes
The drive towards real engine simulations
We thank the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. As well as GENCI and CINES for their computational support.

(1) 40M cells case - 1 step chemistry
(2) 18M cells case - 1 step chemistry
(3) 75M cells case - 1 step chemistry
(4) 37M cells case - 1 step chemistry
(5) 29M cells case - 7 step chemistry
(6) 10M cells case - No chemistry
I/O Patterns and Strategy

- Master / Slave parallel pattern:
 - I/O handled by MASTER core only (synchronisation required).
 - PHDF5 under study (limitation of parallel file systems).

- Two computing modes:
 - All process compute: Compute server mode
 - Only slaves compute / Master handles I/O only: Distinct server
I/O Patterns and Strategy

- Unsteady phenomena: A lot of snapshots allowing easy restart.

- Dynamic partitionning and a root / multiple master strategy is studied to increase I/O performance.
Performance

- Performance has been analyzed with PAPI, Tau and performance analyser (intel).

- Possible bottlenecks:
 - Specific sub-communicator for low memory version to use all reduce.
Status and Scalability

- Today: 10k cores, Tomorrow: 50k.
- Ideal Cells/proc ratio in BGP seems higher than in BGL.
- Global communications seem to exert a great toll on performance: communication scheme?
- Current scalability was achieved by developing the low memory version of the code and synchronization of the processors prior to send/receive of “big” buffers on BGL (not needed in BGP).