
Allen D. Malony, Sameer Shende, Shangkar Mayanglambam,
Scott Biersdorff, Wyatt Spear

{malony,sameer, smeitei,scottb,wspear}@cs.uoregon.edu

Computer and Information Science Department
Performance Research Laboratory

University of Oregon

Performance Measurement and Analysis of
Heterogeneous Parallel Systems:

Tasks and GPU Accelerators

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Outline

 What’s all this about heterogeneous systems?
 Heterogeneity and performance tools
 Beating up on TAU
 Task performance abstraction and good ‘ol master/worker
 What’s all this about GPGPU’s?

 Accelerator performance measurement in PGI compiler
 TAU CUDA performance measurement

 Final thoughts

2

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Heterogeneous Parallel Systems

 What does it mean to be heterogenous?
 New Oxford America, 2nd Edition:

 diverse in character or content
 Prof. Dr. Felix Wolf, Sage of Research Centre Juelich:

 not homogeneous
 Diversity in what?

 Hardware
 processors/cores, memory, interconnection, …
 different in computing elements and how they are used

 Software (hybrid)
 how the hardware is programmed
 different software models, libraries, frameworks, …

 Diversity when? Heterogeneous implies combining together
3

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Why Do We Care?

 Heterogeneity has been around for a long time
 Have different programmable components in computer systems
 Long history of specialized hardware

 Heterogeneous (computing) technology more accessible
 Multicore processors
 Manycore accelerators (e.g., NVIDIA Tesla GPU)
 High-performance processing engines (e.g., IBM Cell BE)

 Performance is the main driving concern
 Heterogeneity is arguably the only path to extreme scale

 Heterogeneous (hybrid) software technology required
 Greater performance enables more powerful software

 Will give rise to more sophisticated software environments
4

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Implications for Performance Tools

 Tools should support parallel computation models
 Current status quo is comfortable

 Mostly homogeneous parallel systems and software
 Shared-memory multithreading – OpenMP
 Distributed-memory message passing – MPI

 Parallel computational models are relatively stable (simple)
 Corresponding performance models are relatively tractable
 Parallel performance tools are just keeping up

 Heterogeneity creates richer computational potential
 Results in greater performance diversity and complexity

 Performance tools have to support richer computation models
 and broader (less constrained) performance perspectives

5

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Current TAU Performance Perspective

 TAU is a direct measurement performance systems
 Event stack performance perspective for “threads of execution”
 Message communication performance

 TAU measures two general types of events
 Interval event: coupled begin and end events
 Atomic events

 TAU also maintains an event stack during execution
 Events can be nested
 Top of event stack the event context
 Used to generate callpath performance measurements
 Events can not overlap! (TAU enforces this requirement)

 What about events that are not event stack compatible?
6

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

MPI and Performance View

 TAU measures MPI events through the MPI interface
 Standard PMPI approach (same as other tools)
 Performance for interval events plus metadata

 Consider a paired message send/receive between P1 and P2
 Suppose we want to measure the time on P1 from:

 when P1 sends a message to P2
  to when P1 receives a message from P2

 TAU MPI events will not do this
 Can create a TAU user-level interval event (s-r)

  s-r begin and s-r end must have the same event context
 no other events can overlap (nested events are ok)

 What if these requirements can not be maintained?

7

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Conflicting Contexts in Send-Receive MPI Scenario

8

Context a

Context b

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Supporting Multiple Performance Perspectives

 Need to support alternative performance views
 Reflect execution logic beyond standard actions
 Capture performance semantics at multiple levels
 Allow for compatible perspectives that do not conflict

 TAU event stack (nesting) perspective somewhat limited
 TAU’s performance mapping can partially address need
 Some frameworks have own performance (timing) packages

 Cactus, SAMRAI, PETSc, Charm++
 Want to leverage/integrate/layer on TAU infrastructure

 Need also to incorporate views of external performance

9

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU ProfilerCreate API

 Exposes TAU measurement infrastructure
 Software packages can easily access TAU profiler objects

 Control completely determined by package
 Can use to translate performance measures
 Can access and set any part of the profiler information

 Goal of simplicity
 API had to be easy to integrate in existing packages!

 Allows for multiple, layered performance measurements
 Simultaneous to TAU (internal) measurement system

10

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

ProfilerCreate API

11

#include <TAU.h>

//TAU_PROFILER_CREATE(void *ptr, char *name, char *type,
 TauGroup_t tau_group);

TAU_PROFILER_CREATE(ptr, “main”, “int (int, char**)”,
 TAU_USER);

TAU_PROFILER_START(ptr);
// work
TAU_PROFILER_STOP(ptr);

#include <TAU.h>

TAU_PROFILER_GET_INCLUSIVE_VALUES(handle, data)
TAU_PROFILER_GET_EXCLUSIVE_VALUES(handle, data)
TAU_PROFILER_GET_CALLS(handle, data)
TAU_PROFILER_GET_CHILD_CALLS(handle, data)
TAU_PROFILER_GET_COUNTER_INFO(counters, numcounters)

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Use of TAU ProfilerCreate API in Cactus

 Cactus has its own performance evaluation interface
 Developers prefer to use TAU’s interface
 Need a runtime performance assessment interface
 Layered Cactus API on top of new ProfilerCreate API
 Created a TAU scoping profiler for capturing top-level

 performance event (equivalent to main)

12

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Cactus Performance (Full Profile)

 Events under Cactus control
 Use TAU to capture timing and hardware measures

13

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Performance Views of External Execution

 Heterogeneous applications can have concurrent execution
 Main “host” path and “external” external paths
 Want to capture performance for all execution paths
 External execution may be difficult or impossible to measure

 “Host” creates measurement view for external entity
 Maintains local and remote performance data
 External entity may provide performance data to the host

 What perspective does the host have of the external entity?
 Determines the semantics of the measurement data

 Consider the “task” abstraction

14

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Task-based Performance Views
 Host regards external execution as a task

 Tasks operate concurrently with respect to the host
 Requires support for tracking asynchronous execution

 Host keeps measurements for external task
 Host-side measurements of task events
 Performance data received external task
 Tasks may have limited measurement support
 May depend on host for performance data I/O

 Need an task performance API
 Capture abstract (host-side) task events
 Populate TAU’s performance data structures for task
 Derived from ProfilerCreate API to address these concerns

15

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU Task API

16

#include <TAU.h>

TAU_CREATE_TASK(taskid);

//TAU_PROFILER_CREATE(void *ptr, char *name, char *type,
 TauGroup_t tau_group);

TAU_PROFILER_CREATE(ptr, “main”, “int (int, char**)”,
 TAU_USER);

TAU_PROFILER_START_TASK(ptr, taskid);
// work
TAU_PROFILER_STOP_TASK(ptr, taskid);

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU Task API (2)

17

#include <TAU.h>

TAU_PROFILER_GET_INCLUSIVE_VALUES_TASK(ptr, data, taskid);
TAU_PROFILER_SET_INCLUSIVE_VALUES_TASK(ptr, data, taskid);

TAU_PROFILER_GET_EXCLUSIVE_VALUES_TASK(ptr, data, taskid);
TAU_PROFILER_SET_EXCLUSIVE_VALUES_TASK(ptr, data, taskid);

TAU_PROFILER_GET_CALLS_TASK(ptr, data, taskid);
TAU_PROFILER_SET_CALLS_TASK(ptr, data, taskid);

TAU_PROFILER_GET_CHILD_CALLS_TASK(ptr, data, taskid);
TAU_PROFILER_SET_CHILD_CALLS_TASK(ptr, data, taskid);

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Master-Worker Scenario with TAU Task API

 Master sends tasks to N workers
 Workers report back their performance to master

 Done for each piece of work
 Build a worker performance

perspective in the master
 TAU will only output a performance

profile from the master
 Each work task will appear as a separate “thread” of the master

 In general, the external performance data can be arbitrary
 Single time value
 More complete representation of external performance

18

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Master-Worker with Task API: 32 Workers

19

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

CPU – GPU Execution Scenarios

20

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

PGI Compiler for GPUs

 Accelerator programming support
 Fortran and C
 Directive-based programming
 Loop parallelization for acceleration on GPUs
 PGI 9.0 for x64-based Linux (preview release)

 Compiled program
 CUDA target
 Synchronous accelerator operations

 Profile interface support

21

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU with PGI Accelerator Compiler

 Supports compiler-based instrumentation for PGI compilers
 Track runtime system events as seen from the host processor
 Show source information associated with events

 Routine name
 File name, source line number for kernel
 Variable names in memory upload, download operations
 Grid sizes

 Any configuration of TAU with PGI supports tracking of
 accelerator operations
 Tested with PGI 8.0.3, 8.0.5, 8.0.6 compilers
 Qualification and testing with PGI 9.0-1 complete

22

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009 23

Wrapping PGI Accelerator Runtime System Calls

 Wrapping performed using performance interface
 Append “_p” to runtime calls of interest to measure

 Provided in calls for:
 Init
 Launching kernels (synchronous execution)
 Upload and download

void __pgi_cu_module_p(void *image);
void __pgi_cu_module(void *image) {
 TAU_PROFILE("__pgi_cu_module","",TAU_DEFAULT);
 __pgi_cu_module_p(image);
}

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

PGI Accelerator Runtime Measurement API

__pgi_cu_sync
__pgi_cu_fini
__pgi_cu_module
__pgi_cu_module_function
__pgi_cu_module_file
__pgi_cu_module_unload
__pgi_cu_paramset
__pgi_cu_launch
__pgi_cu_free
cuda_deviceptr __pgi_cu_alloc

__pgi_cu_download
__pgi_cu_download1
__pgi_cu_download2
__pgi_cu_download3
__pgi_cu_downloadp
__pgi_cu_upload
__pgi_cu_upload1
__pgi_cu_upload2
__pgi_cu_upload3
__pgi_cu_uploadc
__pgi_cu_uploadn

24

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Matrix Multiply (MM) Example

 Test with simple
matrix multiply

 Vary the matrix
sizes

 Demonstrate TAU
integration

25

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Build with Compiler-based Instrumentation

26

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009 27

MM Profile (3000 x 3000, ~22 Gflops)

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

MM Program on Different Array Sizes

 Parameter study of MM to evaluate GPU
 Array sizes: 100, 500, 1000, 2000, 5000
 10 iterations
 Results uploaded

to performance
database

 Want to observe
the effects on
PGI accelerator
runtime routines
 __pgi_cu_launch

28

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

MM Callpath Profiling – Tree Table View

29

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

MM Array Size Comparison with PerfExplorer

 Show effects of array size variation (log scale)
 Init is significant,

but constant
 Launch grows with

size because of
computation

 Upload and
download do also,
as determined by
algorithm

30

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

MM Trace View with Jumpshot

31

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

CUDA Programming for GPGPU

 PGI compiler represents GPGPU programming abstraction
 Performance tool uses runtime system wrappers

 essentially a synchronous call performance model!!!
 In general, programming of GPGPU devices is more complex
 CUDA environment

 Programming of multiple streams and GPU devices
 multiple streams execute concurrently

 Programming of data transfers to/from GPU device
 Programming of GPU kernel code
 Synchronization with streams
 Stream event interface
 CUDA profiling tool

32

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

CPU – GPU Execution Scenarios

33

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU CUDA Performance Measurement

34

 Build on CUDA event interface
 Allow “events” to be placed in streams and processed

 events are timestamped
 CUDA runtime reports GPU timing in event structure
 Events are reported back to CPU when requested

 use begin and end events to calculate intervals
 Want to associate TAU event context with CUDA events

 Get top of TAU event stack at begin
 CUDA kernel invocations are asynchronous

 CPU does not see actual CUDA “end” event
 CPU retrieves events in a non-blocking and blocking manner

 Want to capture “waiting time”

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU CUDA Measurement API
void tau_cuda_init(int argc, char **argv);

 To be called when the application starts
  Initializes data structures and checks GPU status

void tau_cuda_exit()
 To be called before any thread exits at end of application
 All the CUDA profile data output for each thread of execution

void* tau_cuda_stream_begin(char *event, cudaStream_t stream);
 Called before CUDA statements to be measured
 Returns handle which should be used in the end call
  If event is new or the TAU context is new for the event, a new

CUDA event profile object is created
void tau_cuda_stream_end(void * handle);

 Called immediately after CUDA statements to be measured
 Handle identifies the stream
  Inserts a CUDA event into the stream

35

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU CUDA Measurement API (2)
vector<Event> tau_cuda_update();

 Checks for completed CUDA events on all streams
 Non-blocking and returns # completed on each stream

int tau_cuda_update(cudaStream_t stream);
 Same as tau_cuda_update() except for a particular stream
 Non-blocking and returns # completed on the stream

vector<Event> tau_cuda_finalize();
 Waits for all CUDA events to complete on all streams
 Blocking and returns # completed on each stream

int tau_cuda_finalize(cudaStream_t stream);
 Same as tau_cuda_finalize() except for a particular stream
 Blocking and returns # completed on the stream

36

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Scenario Results – One and Two Streams

 Run simple CUDA experiments to test TAU CUDA
 Tesla S1070 test system

37

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Scenario Results – Two Devices, Two Contexts

38

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU CUDA in NAMD

 TAU integrated in Charm++ (another talk)
 NAMD is a molecular dynamics application using Charm++
 NAMD has been accelerated with CUDA
 Test out TAU CUDA with NAMD

 Two processes with one Tesla GPU for each

39

CPU profile

GPU profile (P0)

GPU profile (P1)

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Conclusions

 Heterogeneous parallel computing will challenge parallel
 performance technology
 Must deal with diversity in hardware and software
 Must deal with richer parallelism and concurrency

 Performance tools should support parallel execution and
 computation models
 Understanding of “performance” interactions

 between integrated components
 control and data interactions

 Might not be able to see full parallel (concurrent) detail
 Need to support multiple performance perspectives

 Layers of performance abstraction

40

