Infrastructure/components/IDEs

* MRNet extensions and enhancements

— Generalize in terms of requirements? Or, more
productive to focus on specific implementation?

— Timeframe?

* What framework components do we need?
— What subsystems are needed?

— Do we need multiple implementations? Plug
iINs?

— Transport/reduction/distribution as component

 \WWhere do IDEs fit in to this? The user
Interface”?



What do we mean by

framework?
Tool suites? TAU, PTP, O|SS?
— Large diverse functionality sets
— Limited flexibility
Plug and play subsystems?

— Collectors, visualizers, instrumentors, transports, stack
walkers...

Micro-tools (a la Unix tools like Is, cat)?

Agreed upon functionality?

Modular, unifying infrastructure?

— Built on top of plug and play subsystems

Unifying glue component to use other components
— |Is a library of glue codes useful (pseudo-standards)
An implementation or an abstraction?

A set of interfaces and an agreed upon workflow



What's the ideal goal?

Tool developers perspective

— Mechanism to simplify sharing by tool builders

— Rapid tool prototyping and implementation

— Components independent of particular framework
— High performance of resulting tool

User perspective

— Integrated environment?

— Simplified installation and use
Sysadmin/builder installer

— Ease of configuration

— Portability/flexibility

— Minimal effort to use full tool set

For the working group

— A way to talk about and to make progress on these things
— Defining how subsystems can play well together

— Perioritization of subsystem work for various groups



What do users want?

Interactive tool use

Tools that can be used in regression
processes

Same tool for varied environments and goals

— Different usage scenarios
— Different systems

Transparency from underlying
implementation details

Someone else to do configuration and install
Simplicity in learning to use new tools



What subsystems are needed?
Can we create more pseudo-
standards?

 User interfaces
— Tool control
— Data display

» Visualization
— Data provenance
— Tracking interfaces (action requests/bug tracking, data tracking)
— Source code browsers and editors
— Version control interfaces
— Scripting mechanism
« Executable manipulation
— Binary analysis support (instruction semantics, etc.)
— Symbol table support
— Stack walking support
— Process control
— LD_PRELOAD



What subsystems are needed?
Can we create more pseudo-

standards’?
* Instrumentation components
— Dynamic
— Static
« Data collection mechanisms
— Tracing
— Profiling

« Storage interfaces
— Data storage formats and representations
— Data bases
— Storage access mechanisms
— 1/O forwarding
— File staging



What subsystems are needed?
Can we create more pseudo-
standards?

Source code analysis mechanisms
Aggregators
Data analysis algorithms

Manipulation and transport layer

Run time system support

— System monitoring

— Job launch

— Authentication

— Session management

— System resource management



What subsystem properties are
needed?

Fault tolerance
Performance
Portability
Persistence
Divisibility




Focus on transport layer to identify
pseudo-standard requirements

What are the existing implementations?
— MRNet

- STCI
— TBON-FS? Most don’t think so...

Transport layers at multiple levels; which
level are we focused on? Multiple
hierarchies of levels?

Are we really talking about overlays? Yes.

We’ll focus on multicast/reduction
networks?



MRNet specific discussion

Common themes

— Functionality exists but lacks polish

— Often things that we don’t want to code repeatedly w/in tools
— Value add libraries?

Filter composability

— Already supported?

— Need for generic filter that provides functionality in filter library
Unification of daemons into single place

Mechanism(s) to interact with application process (high
priority)
Sharing state across filters within a daemon

Need notion of personality (medium priority)

— Allow daemon to query where it is in the tree

— Personality may need to change over time if we support
reconfigurability



MRNet Reconfigurability

Changing/rearranging topology dynamically
Adding more nodes is more auxiliary

Some support in fault tolerance
implementation

Distinction between MRNet’s topology and
stream topology

Statically have MRNet topology with more
connectivity so the streams can use different
one?

What is the interface that is needed



MRNet start up functionality

High priority
Where to place internal nodes

Can the process be on top of LaunchMON?

— Provides bulk launch capability

— Define a daemon launch interface

— Need generic implementation to ensure portability
— Need some notion of allocation policy

Process needs to system specific

Is the tool running under launch or attach
mode?



Other non-technical issues

Licensing considerations?
Funding considerations?

The need for standards and related
political considerations?

Subsystem version control



Participants

Jim Galarowicz
Dave Montoya
Greg Watson

Matt Legendre
Dorian Arnold

Phil Roth

Madhavi

Martin Schulz
Bronis de Supinski



