
Infrastructure/components/IDEs

•  MRNet extensions and enhancements
– Generalize in terms of requirements? Or, more

productive to focus on specific implementation?
– Timeframe?

•  What framework components do we need?
– What subsystems are needed?
– Do we need multiple implementations? Plug

ins?
– Transport/reduction/distribution as component

•  Where do IDEs fit in to this? The user
interface?

What do we mean by
framework?

•  Tool suites? TAU, PTP, O|SS?
–  Large diverse functionality sets
–  Limited flexibility

•  Plug and play subsystems?
–  Collectors, visualizers, instrumentors, transports, stack

walkers…
•  Micro-tools (a la Unix tools like ls, cat)?
•  Agreed upon functionality?
•  Modular, unifying infrastructure?

–  Built on top of plug and play subsystems
•  Unifying glue component to use other components

–  Is a library of glue codes useful (pseudo-standards)
•  An implementation or an abstraction?
•  A set of interfaces and an agreed upon workflow

What’s the ideal goal?
•  Tool developers perspective

–  Mechanism to simplify sharing by tool builders
–  Rapid tool prototyping and implementation
–  Components independent of particular framework
–  High performance of resulting tool

•  User perspective
–  Integrated environment?
–  Simplified installation and use

•  Sysadmin/builder installer
–  Ease of configuration
–  Portability/flexibility
–  Minimal effort to use full tool set

•  For the working group
–  A way to talk about and to make progress on these things
–  Defining how subsystems can play well together
–  Prioritization of subsystem work for various groups

What do users want?
•  Interactive tool use
•  Tools that can be used in regression

processes
•  Same tool for varied environments and goals

– Different usage scenarios
– Different systems

•  Transparency from underlying
implementation details

•  Someone else to do configuration and install
•  Simplicity in learning to use new tools

What subsystems are needed?
Can we create more pseudo-

standards?
•  User interfaces

–  Tool control
–  Data display

•  Visualization
–  Data provenance
–  Tracking interfaces (action requests/bug tracking, data tracking)
–  Source code browsers and editors
–  Version control interfaces
–  Scripting mechanism

•  Executable manipulation
–  Binary analysis support (instruction semantics, etc.)
–  Symbol table support
–  Stack walking support
–  Process control
–  LD_PRELOAD

What subsystems are needed?
Can we create more pseudo-

standards?
•  Instrumentation components

–  Dynamic
–  Static

•  Data collection mechanisms
–  Tracing
–  Profiling

•  Storage interfaces
–  Data storage formats and representations
–  Data bases
–  Storage access mechanisms
–  I/O forwarding
–  File staging

What subsystems are needed?
Can we create more pseudo-

standards?
•  Source code analysis mechanisms
•  Aggregators
•  Data analysis algorithms
•  Manipulation and transport layer
•  Run time system support

– System monitoring
–  Job launch
– Authentication
– Session management
– System resource management

What subsystem properties are
needed?

•  Fault tolerance
•  Performance
•  Portability
•  Persistence
•  Divisibility

Focus on transport layer to identify
pseudo-standard requirements

•  What are the existing implementations?
– MRNet
– STCI
– TBON-FS? Most don’t think so…

•  Transport layers at multiple levels; which
level are we focused on? Multiple
hierarchies of levels?

•  Are we really talking about overlays? Yes.
•  We’ll focus on multicast/reduction

networks?

MRNet specific discussion
•  Common themes

–  Functionality exists but lacks polish
–  Often things that we don’t want to code repeatedly w/in tools
–  Value add libraries?

•  Filter composability
–  Already supported?
–  Need for generic filter that provides functionality in filter library

•  Unification of daemons into single place
•  Mechanism(s) to interact with application process (high

priority)
•  Sharing state across filters within a daemon
•  Need notion of personality (medium priority)

–  Allow daemon to query where it is in the tree
–  Personality may need to change over time if we support

reconfigurability

MRNet Reconfigurability
•  Changing/rearranging topology dynamically
•  Adding more nodes is more auxiliary
•  Some support in fault tolerance

implementation
•  Distinction between MRNet’s topology and

stream topology
•  Statically have MRNet topology with more

connectivity so the streams can use different
one?

•  What is the interface that is needed

MRNet start up functionality
•  High priority
•  Where to place internal nodes
•  Can the process be on top of LaunchMON?

– Provides bulk launch capability
– Define a daemon launch interface
– Need generic implementation to ensure portability
– Need some notion of allocation policy

•  Process needs to system specific
•  Is the tool running under launch or attach

mode?

Other non-technical issues

•  Licensing considerations?
•  Funding considerations?
•  The need for standards and related

political considerations?
•  Subsystem version control

Participants
•  Jim Galarowicz
•  Dave Montoya
•  Greg Watson
•  Matt Legendre
•  Dorian Arnold
•  Phil Roth
•  Madhavi
•  Martin Schulz
•  Bronis de Supinski

