
Linux new monitoring interface:
Performance Counter for Linux

eranian@google.com

CSCADS workshop, Lake Tahoe July 2009

Where does PCL come from?

• counter-proposal to perfmon
o as perfmon was introduced into linux-next (very late)

• created by Molnar, Zijlstra, Gleixner (Dec'08)
o all Linux x86 maintainers
o strong x86 influence
o ported to Power rapidly by McKerras (Linux PPC)

• code included in Linus's 2.6.31 kernel
o examples in tools/perf_counters
o documentation in tools/perf_counters

measurement breakdown

PCL key design choices
• supports per-thread and cpu-wide monitoring

o per-thread: state saved/restored on ctxsw
o cpu-wide: logical CPU, state persists across ctxsw

• supports counting and sampling
o save samples in a kernel buffer

• generic event-oriented API
o not limited to PMU events
o never expose actual hardware resource to users

• manages events independently of each other
o event identified by file descriptor
o no notion of a session (events + target thread or CPU)

• system call oriented API (not a driver)

event vs. register oriented API (1)

event vs. register oriented API (2)
• event-oriented

o pros:
 quick ramping up period (read Intel Appendix A)
 mapping event -> register can change dynamically

o cons:
 event -> assignment logic pushed into kernel
 create an abstraction to expose non-counting events

• register-oriented
o pros:

 simpler kernel, easier maintenance
 more error-prone code in user-land

o cons
 harder to change assignment dynamically
 more difficult to expose non register style features

PCL system calls (1)
• adds "one" system call to setup an event

o get a file descriptor back to identify event
o normal file sharing semantics apply

int perf_counter_open(struct perf_counter_attr*hw,
 pid_t pid,
 int cpu,
 int grp,
 int flags)

hw describes event and sampling configuration (64-byte struct)
pid target thread, 0=self, -1=cpu-wide mode
cpu CPU to monitor, -1=per-thread mode
flags provision to extend the number of parameters
grp used to create groups

PCL perf_counter_attr structure
struct perf_counter_attr {
 __u32 type;
 __u32 size;
 __u64 config;
 union {
 __u64 sample_period;
 __u64 sample_freq;
 };
 __u64 sample_type;
 __u64 read_format;

 __u64 disabled : 1,

 inherit : 1,
 pinned : 1,
 exclusive : 1,
 exclude_user : 1,
 exclude_kernel : 1,
 exclude_hv : 1,
 exclude_idle : 1,
 mmap : 1,
 comm : 1,
 freq : 1,
 inherit_stat : 1,
 enable_on_exec : 1,
 __reserved_1 : 51;
 __u32 wakeup_events;
 __u32 __reserved_2;
 __u64 __reserved_3;
 __u64 __reserved_4;
};

PCL system calls (2)

• counts extracted via read()
o +multiplexing timing infos, +sampling identifier
o counts are 64-bit wide (64-bit emulation)

• termination via close()

• additional commands via ioctl()
o enable, disable, reset, rewrite period, refresh

• kernel event buffer mapping via mmap()

• sample notification via fcntl(O_ASYNC/F_SETOWN)

effectively a total of 6 system calls

PCL events

• events have types (defined as enum):
o hardware: used for generic PMU events
o software: page faults, context switches, ...
o tracepoint: ??
o hw_cache: generic cache events (cache, TLB, BPU)
o raw: actual PMU events
o more needed: uncore PMU, chipset counters

• generic PMU events (defined as enum):
o mimic Intel architected PMU
o mapped to actual PMU events by kernel
o lack precise definitions: what do they measure?

PCL generic hardware events

PERF_COUNT_CPU_CYCLES no precise definition yet

PERF_COUNT_INSTRUCTIONS no precise definition yet

PERF_COUNT_CACHE_REFERENCES no precise definition yet

PERF_COUNT_CACHE_MISSES no precise definition yet

PERF_COUNT_BRANCH_INSTRUCTIONS no precise definition yet

PERF_COUNT_BRANCH_MISSES no precise definition yet

PERF_COUNT_BUS_CYCLES no precise definition yet

PCL software events

PERF_COUNT_CPU_CLOCK wall-clock time

PERF_COUNT_TASK_CLOCK virtual time

PERF_COUNT_PAGE_FAULTS page faults

PERF_COUNT_CONTEXT_SWITCHES context switches out of monitored task

PERF_COUNT_CPU_MIGRATIONS task migrations

PERF_COUNT_PAGE_FAULTS_MIN minor page faults

PERF_COUNT_PAGE_FAULTS_MAJ major page faults

PCL generalized cache events

• provide generic events for common cache metrics
o mapped onto actual PMU event if exist

• covers 3-dimensions:

• { L1-D, L1-I, LLC, ITLB, DTLB, BPU }
• { read, write, prefetch }
• { accesses, misses }
o examples: L1D.read.misses

• no precise definitions exist for generic events

• false good idea

o subtle differences make events difficult to compare

PCL event encoding

• event encoded as uint64_t
o if code > 64-bits, can use a reserved field

• privilege levels expressed via dedicated fields

o exclude_user, exclude_kernel, exclude_hv
o overrides priv level in the raw event code

PCL event grouping
• events are independently scheduled on PMU

o reliable event ratios => guarantee on events scheduling

• PCL event group
o events are guaranteed scheduled together
o #events <= #counters
o created by chaining file descriptors
o 1st event = group leader

• start/stop group via group leader
o groups can be scheduled if all its events are enabled
o cannot read all counts via read() on group leader

PCL event assignment logic
• only performed by kernel

• code is PMU or architecture specific
o fairly trivial on X86 (both Intel and AMD)
o very difficult on Itanium for certain events
o may need global view of all events sharing the PMU

• assignment performed on every counter activation:
o activation: ctxsw in, multiplexing in, counter start
o necessary because of PMU sharing
o lazy approach to mitigate cost: try to reuse previous reg

• if kernel wrong => kernel patch
o kernel.org release cycle != distro release cycle
o no user bypass exists

PCL PMU sharing (1)

• per-thread and cpu-wide can run concurrently
• multiple tools may be monitoring the same thread or CPU

• event groups are independently scheduled on PMU

• PMU is shared between event groups by default

o groups may come from different tools/users
o kernel must ensure groups are compatible (no leaks)
o no back-to-back group scheduling guarantee

PCL PMU sharing(2)

• exclusive mode:
o only this group can use the PMU
o does not prevent multiplexing, just sharing
o can be combined with pinning

PCL group multiplexing
• multiplex events to allow sharing when overcommitted

• multiplexing occurs by default
o group granularity
o order: group creation (no back-to-back guarantee)

• time-based multiplexing only
o switch timeout = 1 tick (must disable tickless in syswide)
o not controllable at this point

• scaling of counts at the user level
o time tracking enabled via read_format
o read() returns: count, total_time, time_active

• can prevent multiplexing via pinned
o group stays on PMU until stopped

PCL group scheduling: selection bias?

PCL mmap'd counts
• avoid cost of system call to read count for self-monitoring

o getpid() = 500 cycles (Q6600 2.4GHz)
o read(count) = 2700 cycles (Q6600 2.4GHz)

• leverage HW ability to read registers from user level
o rdpmc(50 cycles) vs. rdmsr (226 cycles) (Q6600 2.4GHz)

• mmap() SW counter + recombine with HW counter
o uses 1 page/event (pressure on RLIMIT_MEMLOCK)
o timing to scale count exposed to support multiplexing

 do {
 barrier();prev_lock = mmap->lock
 if (mmap->index)
 count = rdpmc(mmap->index -1);
 else
 goto regular_read_syscall;
 count += mmap->offset;barrier()
 } while (prev_lock != mmap->lock);

PCL sampling periods

• PCL has notion of a sampling period (!= counter value)
o sampling period is 64-bit wide

• support for event-based sampling
o period = #occurrences (e.g., 2000 LLC_MISSES)
o sampling on SW events possible

• sampling interval can be expressed as frequency
o kernel adjusts period each tick to achieve desired Hz
o updated period logged in event buffer

• no period randomization yet

PCL sampling buffer
• samples saved in kernel event buffer

o size determined via mmap()
o at least 2 pages
o one buffer per event or group

• buffer format
o fixed size header: position + mmap'd count (1 page)
o universal sample: variable-size (type,size)
o can record more than just PMU events

• cyclic read-write buffer
o when buffer full, wait for user notification via write to hdr
o current offset via data_head index in header
o buffer cycle detection possible via data_head
o can have lost samples: LOST event type

PCL sampling buffer positioning

PCL sampling notifications

• event notification on buffer page crossing
o 2-page = double-buffer (notify halfway)
o no control over notification point

• multiple events can be written concurrently
o events appear (data_head) in order to user

• support for poll()/select()

• asynchronous notification via SIGIO
o required for self-sampling
o signal handler nesting possible

PCL sample attributes
• fixed size sample header: { type, misc, size }

o variable-size body

• sample_type bitmask to select what to record/event
o layout: order of increasing enum value

PERF_SAMPLE_IP interrupted code address

PERF_SAMPLE_TID PID, TID

PERF_SAMPLE_TIME sched_clock()

PERF_SAMPLE_ADDR extra 64-bit address??

PERF_SAMPLE_GROUP values of other events in the group

PERF_SAMPLE_CALLCHAIN call stack (kernel OR user)

PERF_SAMPLE_CONFIG event encoding

PERF_SAMPLE_CPU current CPU at time of intr
PERF_SAMPLE_PERIOD last sampling period

PCL event buffer sample types
PERF_EVENT_MMAP executable file mmapped

PERF_EVENT_COMM process name was changed (prctl())

PERF_EVENT_PERIOD sampling period was changed (to adjust frequency)

PERF_EVENT_THROTTLE event group monitoring stopped because of
excessive interrupts

PERF_EVENT_UNTHROTTLE event group monitoring restarted after being
throttled due to excessive interrutps

PERF_EVENT_FORK fork() event

PERF_EVENT_LOST report number of events lost due to user being too
slow to extract events

PERF_EVENT_READ report event count a specific sites, e.g, parent ->
child

PERF_EVENT_SAMPLE counter generated sample

PCL PMU interrupt throttling

• prevent system breakdown with bogus sampling periods
o on X86 using NMI

• sysadmin can set maximum threshold via sysctl()
o /proc/sys/perf_counter_int_limit
o rate is per CPU per second

• when rate is exceeded counter/group is stopped
o throttling recorded in event buffer

• Restart on next timer tick
o unthrottling recorded in event buffer

PCL symbolization support

• correlate sample addresses => binary/module/function
o needed for both per-thread and system-wide

• can request per-event mmap() tracking
o content: pid, tid, addr, len, pgoff, filename

• mmap sample recorded in event buffer
o basis for tools to track full address space changes
o cannot afford to lose one!

PCL inheritance

• event is inherited across fork()/pthread_create()
o counts aggregated into parent
o set inherit in perf_counter_attr

• enable/disable controls entire hierarchy

• sampling support except for group sampling
o works only in single event sampling

PCL tools
• perf: sample tool in kernel tree (tools/perf_counters)

o top mode: sys-wide kernel sampling
o stat mode: similar to pfmon
o report, annotate (similar to OProfile)

$ perf stat date
Mon Jun 8 13:41:45 CEST 2009

 Performance counter stats for 'date':

 3.132542 task clock ticks # 0.914 CPU utilization factor
 2 context switches # 0.001 M/sec
 1 CPU migrations # 0.000 M/sec
 239 pagefaults # 0.076 M/sec
 4938179 CPU cycles # 1576.413 M/sec
 4056211 instructions # 1294.862 M/sec
 74924 cache references # 23.918 M/sec
 3637 cache misses # 1.161 M/sec

 Wall-clock time elapsed: 3.426563 msecs

• PAPI substrate
o libpfm adapted by IBM to support PCL (proof-of-concept)

PCL still missing...
• AMD64: IBS support

o probably new sample_type + pseudo event

• Intel Core, Nehalem: PEBS support
o probably new sample_type + event tag

• Intel Core i7: uncore PMU support
o probably new event type

• Intel Core, Nehalem: LBR support
o probably new sample_type + pseudo event

• X86 event constraints support

• True test will be full IA-64 support

o opcode matching, range restrictions, BTB

PCL issues
• cherry-picking features which they think are useful (to them)

o e.g.: no motivation for Intel Core i7 uncore PMU
o unfortunately different people have different needs
o tool developers don't want to become kernel developers

• need to address advanced features (IBS, PEBS)
• must invent an abstraction: not too high, not too low
• increased kernel complexity

• illusion of simplicity
o PMU deals with micro-architecture which is complex
o must understand what is actually measured and when

• power-user
o need advanced features now
o like to have full control

PCL vs. perfmon

PCL code examples

PCL self-monitor+count example
#include <perf_counter.h>
uint64_t val;
struct perf_counter_attr attr = {0, };
int fd;

attr.type = PERF_TYPE_HARDWARE;
attr.config = PERF_COUNT_HW_CPU_CYCLES; /* generic PMU event*/
attr.disabled = 1;

fd = perf_counter_open(&attr, getpid(), -1, -1, 0);

ioctl(fd, PERF_COUNTER_IOC_ENABLE, 0);

/* RUN CODE TO MONITOR */

ioctl(fd, PERF_COUNTER_IOC_DISABLE, 0);

read(fd, &val, sizeof(val));
printf("%"PRIu64" CYCLES\n", val);
close(fd);

PCL self sampling example
#include <perf_counter.h>

struct perf_counter_attr attr = {0,};
struct mmap_page *header;
size_t map_size;
int fd;

attr.type = PERF_TYPE_HARDWARE;
attr.config = PERF_COUNT_HW_CPU_CYCLES;
attr.sample_period = 2400000;
attr.sample_type = PERF_SAMPLE_IP;
attr.disabled = 1;

fd = perf_counter_open(&attr, getpid(), -1, -1, 0);

map_size = getpagesize() * 3;
header = mmap(NULL, map_size, PROT_READ, MAP_SHARED, fd, 0);

ioctl(fd, PERF_COUNTER_IOC_ENABLE, 0);
/* RUN CODE TO MONITOR */

PCL group self-sampling example
#include <perf_counter.h>
struct perf_counter_attr attr = { 0, };
struct mmap_page *header;
size_t map_size;
int fd[2];

attr.type = PERF_TYPE_HARDWARE;
attr.config = PERF_COUNT_HW_CPU_CYCLES;
attr.sample_period = 2400000;
attr.sample_type = PERF_SAMPLE_IP|PERF_SAMPLE_GROUP;
attr.disabled = 1;

fd[0] = perf_counter_open(&attr, getpid(), -1, -1, 0);

memset(&attr, 0, sizeof(attr));
attr.config = PERF_COUNT_INSTRUCTIONS;

fd[1] = perf_counter_open(&attr, getpid(), -1, fd[0], 0);

map_size = getpagesize() * 3;
header = mmap(NULL, map_size, PROT_READ, MAP_SHARED, fd[0], 0);
ioctl(fd[0], PERF_COUNTER_IOC_ENABLE, 0); /* start group */
/* RUN CODE TO MONITOR */

