Towards Exascale Computing in CSCAPES and EASI

Siva Rajamanickam

Scalable Algorithms Department
Sandia National Laboratories
CSCAPES

- SciDAC applied math institute (2006-11)
 - Combinatorial Scientific Computing for Petascale Simulations
 - Participants: Purdue, SNL, ANL, Ohio State

- Sandia research focus:
 - Partitioning and load balancing
 - Sparse matrix ordering
 - Graph coloring
 - Software: Zoltan and Isorropia
EASI

• Joint Math/CS institute (2010-)
 – Extreme-Scale Algorithms and Software Institute

• Research focus:
 – Architecture Aware Algorithms
 – Multi-precision algorithms
 – Resilient algorithms
 – Libraries for the algorithms.
Towards Exascale in CSCAPES

- Scaling the graph partitioner
 - Partitioning for nodes/cores?
 - Hierarchical partitioning
 - Partitioner that uses a hybrid programming model

- Partition for millions of processing elements
 - Hierarchical partitioning?
 - How to represent the architecture itself
 - Another graph?
 - Who is responsible to provide it?
 - Dynamic repartition
 - How often will the dynamic repartition be called?
 - Dynamic task scheduling on the nodes – Who will do this?
Towards Exascale in EASI

- Right programming model for future machines
 - MPI + Open MP, MPI + Threads, MPI + Collection of Thread teams + Thread Teams?
- Optimize for better communication, NUMA access, and memory access.
- How to write libraries that survive these changes
- How to keep the applications code “serial”
- How to support applications moving from 32-bit to new libraries? Templates?
Thank You