

A Guide to OpenMP

A Guide To OpenMP

Brett Estrade
<estrabd@cs.uh.edu>

HPCTools Group
University of Houston

Department of Computer Science

http://www.cs.uh.edu/~hpctools

A Guide to OpenMP

An Example Shared Memory System & Cache Hierarchy

L2 L2Main Memory

cpu 0

cpu 1 cpu 3

cpu 2

L1

L1

L1

L1

A Guide to OpenMP

Multiple Processes on this System

Main Memory

process 1cpu 1

process 2cpu 2

process 3cpu 3

process 0cpu 0

p0

p1

p2

p3

A Guide to OpenMP

Multiple Processes on this System – logically no diferent than MPI's model

process 1cpu 1

process 2cpu 2

process 3cpu 3

process 0cpu 0

p0

p1

p2

p3

sendrecv

sendrecv

sendrecv

A Guide to OpenMP

A Single Process with Multiple Threads on this System

process 3

Main Memory
process 0

cpu 1

cpu 2

cpu 3

cpu 0 Thread 0

Thread 1

Thread 2

Thread 3

p0

A Guide to OpenMP

Main Memory

cpu 1

cpu 2

cpu 3

cpu 0

cpu 0

OpenMP's Execution Model – Fork & Join

F

t3

t2

t1

t0

t3

t2

t1

Do stuff t0

Do stuff

Do stuff

Do stuff

J t0t0

process 0

A Guide to OpenMP

An Example of Sharing Memory

process 3

Main Memory
process 0

cpu 1

cpu 2

cpu 3

cpu 0 Thread 0

Thread 1

Thread 2

Thread 3

p0 int a

A Guide to OpenMP

An Example of Sharing Memory

process 3

Main Memory
process 0

cpu 1

cpu 2

cpu 3

cpu 0 Thread 0

Thread 1

Thread 2

Thread 3

p0 int a

write

A Guide to OpenMP

An Example of Sharing Memory

process 3

Main Memory
process 0

cpu 1

cpu 2

cpu 3

cpu 0 Thread 0

Thread 1

Thread 2

Thread 3

p0
write

read
int a

A Guide to OpenMP

An Example of Sharing Memory

process 3

Main Memory
process 0

cpu 1

cpu 2

cpu 3

cpu 0 Thread 0

Thread 1

Thread 2

Thread 3

p0
write

read

read
int a

A Guide to OpenMP

An Example of Sharing Memory

process 3

Main Memory
process 0

cpu 1

cpu 2

cpu 3

cpu 0 Thread 0

Thread 1

Thread 2

Thread 3

p0
write

read

read

read
int a

A Guide to OpenMP

Notes on the Example of Sharing Memory

● Okay, so that was highly idealized

● Read/Write order matters (R/W hazards apply)

● Could represent a race condition

● Race conditions introduce non-determinism (not good)

● Threaded programs can be extremely difcult to debug

● Proper precautions must be made to eliminate these

A Guide to OpenMP

What is OpenMP?

● A directive based language standard

● A user level API and runtime environment

● A widely supported standard language specifcation

● A community of active users & researchers

A Guide to OpenMP

The Anatomy of an OpenMP Program

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
 tid = omp_get_thread_num();
 printf("hi, from %d\n", tid);
#pragma omp barrier
 if (tid == 0) {
 printf("%d threads say hi!\n",numt);
 }
 }
 return 0;
}

parallel (fork)
directive

runtime function

structured
parallel block directive

(thread barrier)

clauses

A Guide to OpenMP

OpenMP is Really a Standard Specifcation

The timeline of the OpenMP Standard Specifcation

A Guide to OpenMP

OpenMP vs MPI

And that makes Teen Wolf happy

There is no silver bullet

A Guide to OpenMP

Some Benefts of using OpenMP

● It's portable, supported by most C/C++ & Fortran compilers

● The development cycle is a friendly one

– Can be introduced iteratively into existing code

– Correctness can be verifed along the way

– Likewise, performance benefts can be gauged

● Optimizing memory access in the serial program will beneft
the threaded version (e.g., false sharing, etc)

● It can be fun to use (immediate gratifcation)

A Guide to OpenMP

What Does OpenMP Provide?

● An abstraction above low level thread libraries

● Directives, hidden inside of structured comments

● A runtime library that manages execution dynamically

● Control via environmental variables & a runtime API

● Expectations of behavior & sensible defaults

● A promise of interface portability;

A Guide to OpenMP

What Compilers Support OpenMP?

Vendor Languages Supported Specification

IBM C/C++(10.1),Fortran(13.1) Full 3.0 support

Sun/Oracle C/C++,Fortran(12.1) Full 3.0 support

Intel C/C++,Fortran(11.0) Full 3.0 support

Portland Group C/C++,Fortran Full 3.0 support

Absoft Fortran(11.0) Full 2.5 support

Lahey/Fujitsu C/C++,Fortran(6.2) Full 2.0 support

PathScale C/C++,Fortran Full 2.5 support (based on Open64)

HP C/C++,Fortran Full 2.5 support

Cray C/C++,Fortran Full 3.0 on Cray XT Series Linux

GNU C/C++,Fortran Working towards full 3.0

Microsoft C/C++,Fortran Full 2.0

A Guide to OpenMP

OpenMP Research Activities

● A lot of research goes into the OpenMP's standard

● International Workshop on OpenMP (IWOMP)

● Suites: validation, NAS, SPEC, EPCC, BOTS

● Open Source Research Compilers:

– OpenUH

– NANOS

– Rose/{OMNI,GCC}

– MPC, etc

– Commercial R&D

● cOMPunity - http://www.compunity.org

● Applications research, i.e., HPC users, etc

A Guide to OpenMP

Compiling and Executing Examples

● IBM XL Suite:

– xlc_r, xlf90, etc

● OpenUH:

● uhcc, uhf90, etc

% xlc_r -qsmp=omp test.c -o test.x # compile it
% OMP_NUM_THREADS=4 ./test.x # execute it

% uhcc -mp test.c -o test.x # compile it
% OMP_NUM_THREADS=4 ./test.x # execute itbash

bash

A Guide to OpenMP

OpenMP Directives & Constructs

● Contained inside of structured comments

C/C++:

#pragma omp <directive> <clauses>

Fortran:

!$OMP <directive> <clauses>

● OpenMP compliant compilers fnd and parse directives

● Non-compliant should safely ignore them as comments

● A construct is a directive that afects the enclosing code

● Imperative (standalone) directives exist

● Clauses control the behavior of directives

A Guide to OpenMP

The OpenMP “Runtime” Library (RTL)

● The “runtime” manages the multi-threaded execution:

– It's used by the resulting executable OpenMP program

– It's what spawns threads (e.g., calls pthreads)

– It's what manages shared & private memory

– It's what distributes (shares) work among threads

– It's what synchronizes threads & tasks

– It's what reduces variables and keeps lastprivate

– It's what is infuenced by envars & the user level API
● http://www2.cs.uh.edu/~estrabd/OpenUH/r593/html-libopenmp/

● __omp_fork(...) call graph

http://www2.cs.uh.edu/~estrabd/OpenUH/r593/html-libopenmp/
http://www2.cs.uh.edu/~estrabd/OpenUH/r593/html-libopenmp/dc/d87/a00032_acb1e4cd1e1a77010203f0ae270c3ace3_cgraph.png

A Guide to OpenMP

Useful OpenMP Environmental Variables

● OMP_NUM_THREADS

● OMP_SCHEDULE

● OMP_DYNAMIC

● OMP_STACKSIZE

● OMP_NESTED

● OMP_THREAD_LIMIT

● OMP_MAX_ACTIVE_LEVELS

A Guide to OpenMP

3 Types of Runtime Functions

Execution environment routines; e.g.,

– omp_{set,get}_num_threads

– omp_{set,get}_dynamic

– Each envar has a corresponding get/set

Locking routines; e.g.,

– omp_{init,destroy}_{,nest_}lock

– omp_test_{,nest_}lock

– omp_{set,unset}_{,nest_}lock

Timing routines; e.g.,

– omp_get_wtime

– omp_get_wtick

A Guide to OpenMP

How Is an OpenMP Program Compiled? Here's How OpenUH does it.

Liao, et. al.: http://www2.cs.uh.edu/~copper/openuh.pdf

http://www2.cs.uh.edu/~copper/openuh.pdf

A Guide to OpenMP

What Does the Transformed Code Look like?

● Intermediate code,“W2C”

– uhcc -mp -gnu3 -CLIST:emit_nested_pu simple.c

– http://www2.cs.uh.edu/~estrabd/OpenMP/simple/

static void __omprg_main_1(__ompv_gtid_a, __ompv_slink_a)
 _INT32 __ompv_gtid_a;
 _UINT64 __ompv_slink_a;
{

 register _INT32 _w2c___comma;
 _UINT64 _temp___slink_sym0;
 _INT32 __ompv_temp_gtid;
 _INT32 __mplocal_my_id;

 /*Begin_of_nested_PU(s)*/

 _temp___slink_sym0 = __ompv_slink_a;
 __ompv_temp_gtid = __ompv_gtid_a;
 _w2c___comma = omp_get_thread_num();
 __mplocal_my_id = _w2c___comma;
 printf("hello from %d\n", __mplocal_my_id);
 return;
} /* __omprg_main_1 */

#include <stdio.h>
int main() {
 int my_id;
#pragma omp parallel default(none) private(my_id)
 {
 my_id = omp_get_thread_num();
 printf("hello from %d\n",my_id);
 }
 return 0;
}

The original main()

main is outlined to __omprg_main_1()

http://www2.cs.uh.edu/~estrabd/OpenMP/simple/

A Guide to OpenMP

The new main()

extern _INT32 main() {
 register _INT32 _w2c___ompv_ok_to_fork;
 register _UINT64 _w2c_reg3;
 register _INT32 _w2c___comma;
 _INT32 my_id;
 _INT32 __ompv_gtid_s1;

 /*Begin_of_nested_PU(s)*/

 _w2c___ompv_ok_to_fork = 1;
 if(_w2c___ompv_ok_to_fork)
 {
 _w2c___ompv_ok_to_fork = __ompc_can_fork();
 }
 if(_w2c___ompv_ok_to_fork)
 {
 __ompc_fork(0, &__omprg_main_1, _w2c_reg3);
 }
 else
 {
 __ompv_gtid_s1 = __ompc_get_local_thread_num();
 __ompc_serialized_parallel();
 _w2c___comma = omp_get_thread_num();
 my_id = _w2c___comma;
 printf("hello from %d\n", my_id);
 __ompc_end_serialized_parallel();
 }
 return 0;
} /* main */

calls RTL fork and passes
function pointer to outlined
main()

serial version

__omprg_main_1's
frame pointer

No body wants to code like this, so let the compiler
and runtime do most all this tedious work!

A Guide to OpenMP

The parallel Construct

● Where the “fork” occurs (__ompc_fork(...))

● Encloses all other OpenMP constructs & directives

● This construct accepts the following clauses: if,
num_threads, private, firstprivate, shared,
default, copyin, reduction

● Can call functions that contain “orphan” constructs

– Statically outside of parallel, but lexically inside
during runtime

● Can be nested

A Guide to OpenMP

A Simple OpenMP Example

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
 tid = omp_get_thread_num();
 printf("hi, from %d\n", tid);
#pragma omp barrier
 if (tid == 0) {
 printf("%d threads say hi!\n",numt);
 }
 }
 return 0;
}

C/C++

Output using 4 threads:

hi, from 3
hi, from 0
hi, from 2
hi, from 1
4 threads say hi!

Note, thread order
not guaranteed!

get number of threads

fork

wait for all threads

get thread id

join (implicit barrier, all wait)

A Guide to OpenMP

The Fortran Version

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
 tid = omp_get_thread_num();
 printf("hi, from %d\n", tid);
#pragma omp barrier
 if (tid == 0) {
 printf("%d threads say hi!\n",numt);
 }
 }
 return 0;
}

 program hello90
 use omp_lib
 integer:: id, numt
 numt = omp_get_num_threads()
!$omp parallel private(id) shared(numt)
 tid = omp_get_thread_num()
 write (*,*) 'hi, from', tid
!$omp barrier
 if (tid == 0) then
 write (*,*) numt,'threads say hi!'
 end if
!$omp end parallel
 end program

C/C++ F90

Output using 4 threads:

hi, from 3
hi, from 0
hi, from 2
hi, from 1
4 threads say hi!

Note, thread order
not guaranteed!

A Guide to OpenMP

Now, Just the Parallelized Code

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
 tid = omp_get_thread_num();
 printf("hi, from %d\n", tid);
#pragma omp barrier
 if (tid == 0) {
 printf("%d threads say hi!\n",numt);
 }
 }
 return 0;
}}

 program hello90
 use omp_lib
 integer:: id, numt
 numt = omp_get_num_threads()
!$omp parallel private(id) shared(numt)
 tid = omp_get_thread_num()
 write (*,*) 'hi, from', tid
!$omp barrier
 if (tid == 0) then
 write (*,*) numt,'threads say hi!'
 end if
!$omp end parallel
 end program

C/C++ F90

Output using 4 threads:

hi, from 3
hi, from 0
hi, from 2
hi, from 1
4 threads say hi!

Note, thread order
not guaranteed!

A Guide to OpenMP

Trace of The Execution

0 B 0hi, from 0 0 == 0
5 threads say hi!

1 B 1hi, from 1 1 != 0

2 B 2hi, from 2 2 !=0

3 B 3hi, from 3 3 != 0

F J

B = wait for all threads @ barrier before progressing further.

fork

all threads call printf

thread barrier

only thread with
tid == 0 does this

other threads wait

join

A Guide to OpenMP

Controlling the Fork at Runtime

● The “if” clause contains a conditional expression.

● If TRUE, forking occurs, else it doesn't

● The “num_threads” clause is another way to control the
number of threads active in a parallel contruct

int n = some_func();
#pragma omp parallel if(n>5)
 {
 … do stuff in parallel
 }

int n = some_func();
#pragma omp parallel num_threads(n)
 {
 … do stuff in parallel
 }

A Guide to OpenMP

The Data Environment Among Threads

● default([shared]|none|private)

● shared(list,) - supported by parallel construct only

● private(list,)

● firstprivate(list,)

● lastprivate(list,) - supported by loop & sections constructs only

● reduction(<op>:list,)

● copyprivate(list,) - supported by single construct only

● threadprivate - its own directive

#pragma omp threadprivate(list,)

!$omp threadprivate(list,)

● copyin(list,) - supported by parallel construct only

A Guide to OpenMP

Private Variable Initialization

● private(list,)

– Initialized value of variable(s) is undefned

● firstprivate(list,)

– Initialized private variables with value at time of fork to the
master's value

● copyin(list,)

– Initialize private variables with the value of master's list

● threadprivate(list,)

– Provides for the initialized of private variables that are
treated as global variables inside of each thread

– static variables in C/C++

– COMMON blocks in Fortran

A Guide to OpenMP

Getting Data Out

● Variables in list are technically shared
● copyprivate(list,)

– Used by single to pass list to corresponding private vars in
the other threads

● lastprivate(list,)

– vars in list will be assigned the last value assigned to it
by a thread

– supported by loop & sections construct

● reduction(<op>:list,)

– aggregates vars in list using the defned operation

– supported by parallel, loop, & sections constructs

– <op> must be an actual operator or an intrinsic function

A Guide to OpenMP

private & shared in that Simple OpenMP Example

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
 tid = omp_get_thread_num();
 printf("hi, from %d\n", tid);
#pragma omp barrier
 if (tid == 0) {
 printf("%d threads say hi!\n",numt);
 }
 }
 return 0;
}

 program hello90
 use omp_lib
 integer:: id, numt
 numt = omp_get_num_threads()
!$omp parallel private(id) shared(numt)
 tid = omp_get_thread_num()
 write (*,*) 'hi, from', tid
!$omp barrier
 if (tid == 0) then
 write (*,*) numt,'threads say hi!'
 end if
!$omp end parallel
 end program

C/C++ F90

Output using 4 threads:

hi, from 3
hi, from 0
hi, from 2
hi, from 1
4 threads say hi!

Note, thread order
not guaranteed!

A Guide to OpenMP

Memory Consistency Model

● OpenMP uses a “relaxed consistency” model

● In contrast to “sequential consistency”

● Cores may have out of date values in their cache

● Most constructs imply a “flush” of each thread's cache

● Treated as a memory “fence” by compilers when it
comes to reordering operations

● OpenMP provides an explicit fush directive

#pragma flush (list,)

!$OMP FLUSH(list,)

A Guide to OpenMP

Synchronization

● Explict sync points are enabled with a barrier:

#pragma omp barrier

!$omp barrier

● Implicit sync points exist at the end of:

– parallel, for, do, sections, single,
WORKSHARE

● Implicit barriers can be turned of with, “nowait”

● There is no barrier associated with:

– critical, atomic, master

● Explicit barriers must be used if this is required

A Guide to OpenMP

An explicit barrier in that Simple OpenMP Example

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
 tid = omp_get_thread_num();
 printf("hi, from %d\n", tid);
#pragma omp barrier
 if (tid == 0) {
 printf("%d threads say hi!\n",numt);
 }
 }
 return 0;
}

 program hello90
 use omp_lib
 integer:: id, numt
 numt = omp_get_num_threads()
!$omp parallel private(id) shared(numt)
 tid = omp_get_thread_num()
 write (*,*) 'hi, from', tid
!$omp barrier
 if (tid == 0) then
 write (*,*) numt,'threads say hi!'
 end if
!$omp end parallel
 end program

C/C++ F90

Output using 4 threads:

hi, from 3
hi, from 0
hi, from 2
hi, from 1
<barrier>
4 threads say hi!

A Guide to OpenMP

Trace of The Execution

0 B 0hi, from 0 0 == 0
5 threads say hi!

1 B 1hi, from 1 1 != 0

2 B 2hi, from 2 2 !=0

3 B 3hi, from 3 3 != 0

F J

B = wait for all threads @ barrier before progressing further.
#pragma omp barrier

A Guide to OpenMP

The reduction Clause

● Supported by parallel and worksharing constructs

– parallel, for, do, sections

● Creates a private copy of a shared var for each thread

● At the end of the construct containing the reduction
clause, all private values are reduced into one using the
 specifed operator or intrinsic function

#pragma omp parallel reduction(+:i)

!$omp parallel reduction(+:i)

A Guide to OpenMP

Trace of a variable reduction

0 i
0
 = 1

1 i
1
 = 1

2 i
2
 = 1

3 i
3
 = 1

F

i = 0

J
reduction(+:i)

i = i
0
+i

1
 +i

2
 + i3

+ i

4

i = 4

A Guide to OpenMP

Valid Operations for the reduction Clause

● Reduction operations in C/C++:

– Arithmetic: + - * /

– Bitwise: & ^ |

– Logical: && ||
● Reduction operations in Fortran

– Equivalent arithmetic, bitwise, and logical operations

– min, max
● User defined reductions (UDR) is an area of current research

● Note: initialized value matters!

A Guide to OpenMP

Nested parallel Constructs

● Can be nested, but specifcation makes it optional

– OMP_NESTED={true,false}

– OMP_MAX_ACTIVE_LEVELS={1,2,..}

– omp_{get,set}_nested()

– omp_get_level()

– omp_get_ancestor_thread_num(level)

● Each encountering thread becomes the master of
the newly forked team

● Each subteam is numbered 0 through N-1

● Useful, but still incurs parallel overheads

A Guide to OpenMP

The Uniques of Thread Numbers in Nesting

0

2 1 0

2 1 0 2 1 0 2 1 0

Nest Level 0

Nest Level 1

Nest Level 2

__ompc_fork(..)

__ompc_fork(..) __ompc_fork(..) __ompc_fork(..)

A Guide to OpenMP

Work Sharing Constructs

● Threads share work in shared memory.

● OpenMP provides “work sharing” contructs

● These constructions include:

– for, DO

– sections

– WORKSHARE (Fortran only)
– single, master

A Guide to OpenMP

The Loop Constructs: for & DO

● The loop constructs distribute iterations among threads
according to some schedule (default is static)

● Among frst constructs used when introducing OpenMP

● The clauses supported by the loop constructions are:
private, firstprivate, lastprivate, reduction,
schedule, order, collapse, nowait

● The loop's schedule refers to the runtime policy used to
distribute work among the threads.

A Guide to OpenMP

thread 1
i = 34 thru 67

thread 2
i = 68 thru 99

thread 0
i = 0 thru 33

OpenMP Parallelizes Loops by Distributing Iterations to Each Thread

int i;
#pragma omp for
 for (i=0;i <= 99; i++) {
 // do stuff
 }

for (i=0;i <= 33; i++) {
 // do stuff
}

for (i=34;i <= 67; i++) {
 // do stuff
}

for (i=68;i <= 99; i++) {
 // do stuff
}

A Guide to OpenMP

Parallelizing Loops - C/C++

http://developers.sun.com/solaris/articles/studio_openmp.html

#include <stdio.h>
#include <omp.h>
#define N 100

int main(void)
{
 float a[N], b[N], c[N];
 int i;
 omp_set_dynamic(0); // ensures use of all available threads
 omp_set_num_threads(20); // sets number of all available threads to 20
/* Initialize arrays a and b. */
 for (i = 0; i < N; i++)
 {
 a[i] = i * 1.0;
 b[i] = i * 2.0;
 }
/* Compute values of array c in parallel. */

#pragma omp parallel shared(a, b, c) private(i)
 {
#pragma omp for [nowait]
 for (i = 0; i < N; i++)
 c[i] = a[i] + b[i];
 }
 printf ("%f\n", c[10]);
}

A Guide to OpenMP

Parallelizing Loops - C/C++

http://developers.sun.com/solaris/articles/studio_openmp.html

#include <stdio.h>
#include <omp.h>
#define N 100

int main(void)
{
 float a[N], b[N], c[N];
 int i;
 omp_set_dynamic(0); // ensures use of all available threads
 omp_set_num_threads(20); // sets number of all available threads to 20
/* Initialize arrays a and b. */
 for (i = 0; i < N; i++)
 {
 a[i] = i * 1.0;
 b[i] = i * 2.0;
 }
/* Compute values of array c in parallel. */

#pragma omp parallel shared(a, b, c) private(i)
 {
#pragma omp for [nowait]
 for (i = 0; i < N; i++)
 c[i] = a[i] + b[i];
 }
 printf ("%f\n", c[10]);
}

A Guide to OpenMP

Parallelizing Loops - Fortran

http://developers.sun.com/solaris/articles/studio_openmp.html

 PROGRAM VECTOR_ADD
 USE OMP_LIB
 PARAMETER (N=100)
 INTEGER N, I
 REAL A(N), B(N), C(N)
 CALL MP_SET_DYNAMIC (.FALSE.) !ensures use of all available threads
 CALL OMP_SET_NUM_THREADS (20) !sets number of available threads to 20
! Initialize arrays A and B.
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = I * 2.0
 ENDDO
! Compute values of array C in parallel.
!$OMP PARALLEL SHARED(A, B, C), PRIVATE(I)
!$OMP DO
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP END DO [nowait]
 ! ... some more instructions
!$OMP END PARALLEL
 PRINT *, C(10)
 END

A Guide to OpenMP

Parallelizing Loops - Fortran

http://developers.sun.com/solaris/articles/studio_openmp.html

 PROGRAM VECTOR_ADD
 USE OMP_LIB
 PARAMETER (N=100)
 INTEGER N, I
 REAL A(N), B(N), C(N)
 CALL MP_SET_DYNAMIC (.FALSE.) !ensures use of all available threads
 CALL OMP_SET_NUM_THREADS (20) !sets number of available threads to 20
! Initialize arrays A and B.
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = I * 2.0
 ENDDO
! Compute values of array C in parallel.
!$OMP PARALLEL SHARED(A, B, C), PRIVATE(I)
!$OMP DO
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP END DO [nowait]
 ! ... some more instructions
!$OMP END PARALLEL
 PRINT *, C(10)
 END

A Guide to OpenMP

Parallel Loop Scheduling

● Scheduling refers to how iterations are assigned to a
particular thread;

● There are 5 types:

– static – each thread is able to calculate its chunk

– dynamic – frst come, frst serve managed by runtime

– guided – decreasing chunk sizes, increasing work

– auto – determined automatically by compiler or runtime

– runtime – defned by OMP_SCHEDULE or omp_set_schedule

● Limitations

– only one schedule type may be used at for a given loop

– the chunk size applies to all threads

A Guide to OpenMP

Parallel Loop Scheduling - Example

!$OMP PARALLEL SHARED(A, B, C) PRIVATE(I)
!$OMP DO SCHEDULE (DYNAMIC,4)
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP END DO [nowait]
!$OMP END PARALLEL

#pragma omp parallel shared(a, b, c) private(i)
 {
#pragma omp for schedule (guided,4) [nowait]
 for (i = 0; i < N; i++)
 c[i] = a[i] + b[i];
 }

Fortran

C/C++

schedule chunk size

A Guide to OpenMP

The ordered Clause and ordered construct

● An ordered loop contains code that must execute in
serial order

● The ordered code must be inside of an ordered
construct

#pragma omp parallel shared(a, b, c) private(i)
 {
#pragma omp for ordered
 for (i = 0; i <= 99; i++) {
 // do a lot of stuff concurrently
#pragma omp ordered
 {
 a = i * (b + c);
 b = i * (a + c);
 c = i * (a + b);
 }
 }
 }

ordered clause

ordered construct

A Guide to OpenMP

The collapse Clause

● Specifes how many loop levels are to be associated
with the loop construct

● The n levels are collapsed into a combined iteration
space

● The schedule applies the entire iteration space as usual

#pragma omp parallel shared(a, b, c) private(i)
 {
#pragma omp for schedule(dynamic,4) collapse(2)
 for (i = 0; i <= 99; i++) {
 for (j = i; j <= 99; j++) {
 // do stuff for each i,j
 }
 }

A Guide to OpenMP

The WORKSHARE Construct (Fortran Only)

● Provides for parallel execution of code using F90 array
syntax

● The clauses supported by the WORKSHARE construct are:
private, firstprivate, copyprivate, nowait

● There is an implicit barrier at the end of this construct

● Valid Fortran code enclosed in a workshare construct:

– Array & scalar variable assignments

– FORALL statements & constructs

– WHERE statements & constructs

– User defned functions of type ELEMENTAL

– OpenMP atomic, critical, & parallel

A Guide to OpenMP

The sections Construct

● The sections construct defnes code that is to be
executed once by exactly one thread

● A barrier is implied

● Supported clauses include: private, firstprivate,
lastprivate, reduction, nowait

A Guide to OpenMP

#include <stdio.h>
#include <omp.h>

int square(int n){
 return n*n;
}

int main(void){
 int x, y, z, xs, ys, zs;
 omp_set_dynamic(0);
 omp_set_num_threads(3);
 x = 2; y = 3; z = 5;

#pragma omp parallel
 {
#pragma omp sections
 {
#pragma omp section
 { xs = square(x);
 printf ("id = %d, xs = %d\n", omp_get_thread_num(), xs);
 }
#pragma omp section
 { ys = square(y);
 printf ("id = %d, ys = %d\n", omp_get_thread_num(), ys);
 }
#pragma omp section
 { zs = square(z);
 printf ("id = %d, zs = %d\n", omp_get_thread_num(), zs);
 }
 }
 }
 return 0;
}

A section Construct Example

http://developers.sun.com/solaris/articles/studio_openmp.h
tml

A Guide to OpenMP

A section Construct Example

#pragma omp sections
 {
#pragma omp section
 { xs = square(x);
 printf ("id = %d, xs = %d\n", omp_get_thread_num(), xs);
 }
#pragma omp section
 { ys = square(y);
 printf ("id = %d, ys = %d\n", omp_get_thread_num(), ys);
 }
#pragma omp section
 { zs = square(z);
 printf ("id = %d, zs = %d\n", omp_get_thread_num(), zs);
 }
 }

thread 0

thread 1

thread 2

Time

t=0 t=1

A Guide to OpenMP

Combined parallel Constructs

● parallel may be combined with the following:

– parallel, for, do, sections, WORKSHARE

● Semantics are identical to usage already discussed

#pragma omp parallel for shared(a, b, c) private(i) schedule (guided,4)
 {
 for (i = 0; i < N; i++)
 c[i] = a[i] + b[i];
 }

!$OMP PARALLEL DO SHARED(A, B, C) PRIVATE(I)
!$OMP& SCHEDULE(DYNAMIC,4)
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP END PARALLEL DO

A Guide to OpenMP

Singling Out Threads with master and single Constructs

● Code inside of A master construct will only be executed by the master
thread.

● There is NO implicit barrier associated with master; other threads ignore it.

● Code inside of a single construct will be executed by the frst thread to
encounter it.

● A single construct contains an implicit barrier that will respect nowait.

!$OMP MASTER
 … do stuff
!$OMP END MASTER

!$OMP SINGLE
 … do stuff
!$OMP END SINGLE [nowait]

A Guide to OpenMP

The task Construct

● Tasks were added in 3.0 to handle dynamic and
unstructured applications

– Recursion

– Tree & graph traversals
● OpenMP's execution model based on threads was

redefned

● A thread is considered to be an implicit task

● The task construct defnes singular tasks explicitly

● Less overhead than nested parallel regions

A Guide to OpenMP

Threads are now Implicit Tasks

process 3

Main Memory
process 0

cpu 1

cpu 2

cpu 3

cpu 0 Implicit task 0

Implicit task 1

Implicit task 2

Implicit task 3

p0

A Guide to OpenMP

The task Construct

● Clauses supported are: if, default, private,
firstprivate shared, tied/untied

● By default, all variables are firstprivate

● Tasks can be nested syntactically, but are still
asynchronous

● The taskwait directive causes a task to wait until all its
children have completed

A Guide to OpenMP

Each Thread Conceptually Has Both a tied & untied queue

process 3

Main Memory

cpu 1

cpu 2

cpu 3

cpu 0 Implicit task 0

Implicit task 1

Implicit task 2

Implicit task 3

p0
tied (private)

untied (public)

tied (private)

untied (public)

tied (private)

untied (public)

tied (private)

untied (public)

A Guide to OpenMP

A task Construct C/C++ Example

struct node {
 struct node *left;
 struct node *right;
};

extern void process(struct node *);

void traverse(struct node *p) {
 if (p->left)
#pragma omp task // p is firstprivate by default
 traverse(p->left);
 if (p->right)
#pragma omp task // p is firstprivate by default
 traverse(p->right);
 process(p);
}

A Guide to OpenMP

A task Construct Fortran Example

 RECURSIVE SUBROUTINE traverse (P)
 TYPE Node
 TYPE(Node), POINTER :: left, right
 END TYPE Node
 TYPE(Node) :: P
 IF (associated(P%left)) THEN
!$OMP TASK ! P is firstprivate by default
 call traverse(P%left)
!$OMP END TASK
 ENDIF
 IF (associated(P%right)) THEN
!$OMP TASK ! P is firstprivate by default
 call traverse(P%right)
!$OMP END TASK
 ENDIF
 CALL process (P)
END SUBROUTINE

A Guide to OpenMP

Mutual Exclusion: critical, atomic, and omp_lock_t

● Some code must be executed by one thread at a time

● Efectively serializes the threads

● Also called critical sections

● OpenMP provides 3 ways to achieve mutual exclusion

– The critical construct encloses a critical
section

– The atomic construct enclose updates to shared
variables

– A low level, general purpose locking mechanism

A Guide to OpenMP

The critical Construct

#pragma omp parallel
 {
#pragma omp critical
 {
 // some code
 }
 }

● The critical construct enclose code that should be
executed by all threads, just in some serial order

● The efect is equivalent to a lock protecting the code

A Guide to OpenMP

A critical Construct Example

#pragma omp parallel shared(a, b, c) private(i)
 {
#pragma omp critical
 {
 //
 // do stuff (one thread at a time)
 //
 }
 }

thread 1 thread 0 thread 2

t = 0 t = 1 t = 2

Time
Note:
Encountering thread
order not gauranteed!

A Guide to OpenMP

The Named critical Construct

● Names may be applied to critical constructs.

● The efect is equivalent to using a diferent lock for
each section.

#pragma omp parallel
 {
#pragma omp critical(a)
 {
 // some code
 }
#pragma omp critical(b)
 {
 // some code
 }
#pragma omp critical(c)
 {
 // some code
 }
 }

A Guide to OpenMP

A Named critical Construct Example

#include <stdio.h>
#include <omp.h>
#define N 100

int main(void)
{ float a[N], b[N], c[3];
 int i;
 /* Initialize arrays a and b. */
 for (i = 0; i < N; i++)
 { a[i] = i * 1.0 + 1.0;
 b[i] = i * 2.0 + 2.0;
 }
 /* Compute values of array c in parallel. */
#pragma omp parallel shared(a, b, c) private(i)
 {
#pragma omp critical(a)
 { for (i = 0; i < N; i++)
 C[0] += a[i] + b[i];
 printf("%f\n",c[0]);
 }
#pragma omp critical(b)
 { for (i = 0; i < N; i++)
 c[1] += a[i] + b[i];
 printf("%f\n",c[1]);
 }
#pragma omp critical(c)
 { for (i = 0; i < N; i++)
 c[2] += a[i] + b[i];
 printf("%f\n",c[2]);
 }
 }
}

A Guide to OpenMP

A Named critical Construct Example

#pragma omp critical(a)
 {
 // some code
 }
#pragma omp critical(b)
 {
 // some code
 }
#pragma omp critical(c)
 {
 // some code
 }

thread 1

t = 0

Time

Note:
Encountering thread
order not gauranteed!

thread 0

t = 1

thread 2

t = 2

thread 1 thread 0

thread 1

t = 3

thread 2

thread 0

t = 1

thread 2

A Guide to OpenMP

The atomic Construct for Safely Updating Shared Variables

#include <stdio.h>
#include <omp.h>

int main(void) {
 int count = 0;
#pragma omp parallel shared(count)
 {
 #pragma omp atomic
 count++;
 }
 printf("Number of threads: %d\n",count);
}

Note:
Encountering thread
order not gauranteed!

● Protected writes to shared variables

● Lighter weight than using a critical contruct

A Guide to OpenMP

Locks in OpenMP

● omp_lock_t, omp_lock_kind

● Threads set/unset locks

● Nested locks can be set multiple times by the same
thread before releasing them

● More fexible than critical construct

A Guide to OpenMP

Using Locks in OpenMP

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

int main()
{
 int x;
 omp_lock_t lck;
 omp_init_lock (&lck);
 omp_set_lock (&lck);
 x = 0;
#pragma omp parallel shared (x)
 {
#pragma omp master
 {
 x = x + 1;
 omp_unset_lock (&lck);
 }
/* Some more stuff. */
 }
 omp_destroy_lock (&lck);
}

A Guide to OpenMP

Using Nested Locks in OpenMP

#include <omp.h>
typedef struct {
 int a,b; omp_nest_lock_t lck; } pair;
int work1();
int work2();
int work3();

void incr_a(pair *p, int a) {
 /* Called only from incr_pair, no need to lock. */
 p->a += a;
}
void incr_b(pair *p, int b) {
 /* Called both from incr_pair and elsewhere, */
 /* so need a nestable lock. */
 omp_set_nest_lock(&p->lck);
 p->b += b;
 omp_unset_nest_lock(&p->lck);
}

void incr_pair(pair *p, int a, int b) {
 omp_set_nest_lock(&p->lck);
 incr_a(p, a);
 incr_b(p, b);
 omp_unset_nest_lock(&p->lck);
}

void a45(pair *p) {
#pragma omp parallel sections
 {
#pragma omp section
 incr_pair(p, work1(), work2());
#pragma omp section
 incr_b(p, work3());
 }
}

A Guide to OpenMP

Fortran Programming Tips

● In fxed form Fortran OpenMP directives can hide behind
the following “sentinals”

!$[OMP],c$[OMP],*$[OMP]
● Free form requires “!$”

● Sentinals can enable conditional compilation

!$ omp_set_num_threads(n)
● Fortran directives should start in column 0

● Long directive continuations take a form similar to:

!$OMP PARALLEL DEFAULT(NONE)
!$OMP& SHARED(INP,OUTP,BOXL,TEMP,RHO,NSTEP,TSTEP,X,Y,Z,VX,VY,VZ,BOXL)
!$OMP& SHARED(XO,YO,ZO,TSTEP,V2T,VXT,VYT,VZT,IPRINT,ISTEP,ETOT,ERUN)
!$OMP& SHARED(FX,FY,FZ,PENER)
!$OMP& PRIVATE(I)

A Guide to OpenMP

C/C++ Programming Tips

● No line continuations, entire directive on single line

● No conditional compilation sentinals, use “#ifdef”, etc

● Coding style
int main () {
 ...
#pragma parallel
 {
#pragma omp sections
 {
#pragma omp section
 { xs = square(x);
 printf ("id = %d, xs = %d\n", omp_get_thread_num(), xs);
 }
#pragma omp section
 { ys = square(y);
 printf ("id = %d, ys = %d\n", omp_get_thread_num(), ys);
 }
 }
 }
 return 0; /* end main */
}

all #pragmas in
col. 0

braces indented
as usual

A Guide to OpenMP

General Programming Tips

● Minimize parallel constructs

● Use combined constructs, if it doesn't violate the above

● Minimize shared variables, maximize private

● Minimize barriers, but don't sacrifce safety

● When inserting OpenMP into existing code

– Use a disciplined, iterative cycle – test against serial
version

– Use barriers liberally

– Optimize OpenMP & asynchronize last

● When starting from scratch

– Start with an optimized serial version

A Guide to OpenMP

OpenMP Idioms

● Won't cover directly, but they exist for:

● Pipelining computations

● Efectively using I/O (especially in a pipelined context)

● Creating user defned reductions (UDR) (e.g., for divide
& conquer algorithms, map-reduce type applications)

● Interleaving N units of critical work with M threads to
minimize idle time

● Efective use of nested parallelism and tasks for
unbalanced and dynamical work loads

● ...many more

A Guide to OpenMP

Other Issues Not Covered Directly

● Profling & optimizations

● Debugging & troubleshooting techniques

● Real world OpenMP

● OpenMP in hybrid contexts

A Guide to OpenMP

The Future of OpenMP

● It's not going anywhere; vendor buy-in is as strong as ever

● Big 3:

Refnement to tasking model (scheduling, etc)

– Error handling

– Accelerators

● Scaling

– Thousands of threads

– Data locality

– More efcient synchronization constructs &
implementations

● Remaining relevant

A Guide to OpenMP

Additional Resources

● http://www.cs.uh.edu/~hpctools

● http://www.compunity.org

● http://www.openmp.org

– Specifcation 3.0

● “Using OpenMP”, Chapman, et. al.

Covers through 2.5

http://www.cs.uh.edu/~hpctools
http://www.compunity.org/
http://www.openmp.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

