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An Example Shared Memory System & Cache Hierarchy
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Multiple Processes on this System
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Multiple Processes on this System – logically no diferent than MPI's model
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A Single Process with Multiple Threads on this System
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Main Memory
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An Example of Sharing Memory
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An Example of Sharing Memory
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An Example of Sharing Memory
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An Example of Sharing Memory
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Notes on the Example of Sharing Memory

● Okay, so that was highly idealized

● Read/Write order matters (R/W hazards apply)

● Could represent a race condition

● Race conditions introduce non-determinism (not good)

● Threaded programs can be extremely difcult to debug

● Proper precautions must be made to eliminate these
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What is OpenMP?

● A directive based language standard 

● A user level API and runtime environment

● A widely supported standard language specifcation

● A community of active users & researchers
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The Anatomy of an OpenMP Program

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
   tid = omp_get_thread_num();
   printf("hi, from %d\n", tid);
#pragma omp barrier
   if ( tid == 0 ) {
     printf("%d threads say hi!\n",numt);
   }
 }
  return 0;
}

parallel (fork)
directive

runtime function

structured 
parallel  block directive 

(thread barrier)

clauses
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OpenMP is Really a Standard Specifcation

The timeline of the OpenMP Standard Specifcation
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OpenMP vs MPI

And that makes Teen Wolf happy

There is no silver bullet
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Some Benefts of using OpenMP

● It's portable, supported by most C/C++ & Fortran compilers

● The development cycle is a friendly one

– Can be introduced iteratively into existing code

– Correctness can be verifed along the way

– Likewise, performance benefts can be gauged

● Optimizing memory access in the serial program will beneft 
the threaded version (e.g., false sharing, etc)

● It can be fun to use (immediate gratifcation)
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What Does OpenMP Provide?

● An abstraction above low level thread libraries

● Directives, hidden inside of structured comments

● A runtime library that manages execution dynamically

● Control via environmental variables & a runtime API

● Expectations of behavior & sensible defaults

● A promise of interface portability;
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What Compilers Support OpenMP?

Vendor Languages Supported Specification

IBM C/C++(10.1),Fortran(13.1) Full 3.0 support

Sun/Oracle C/C++,Fortran(12.1) Full 3.0 support

Intel C/C++,Fortran(11.0) Full 3.0 support

Portland Group C/C++,Fortran Full 3.0 support

Absoft Fortran(11.0) Full 2.5 support

Lahey/Fujitsu C/C++,Fortran(6.2) Full 2.0 support

PathScale C/C++,Fortran Full 2.5 support (based on Open64)

HP C/C++,Fortran Full 2.5 support

Cray C/C++,Fortran Full 3.0 on Cray XT Series Linux

GNU C/C++,Fortran Working towards full 3.0

Microsoft C/C++,Fortran Full 2.0
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OpenMP Research Activities

● A lot of research goes into the OpenMP's standard

● International Workshop on OpenMP (IWOMP)

● Suites: validation, NAS, SPEC, EPCC, BOTS

● Open Source Research Compilers:

– OpenUH

– NANOS

– Rose/{OMNI,GCC}

– MPC, etc

– Commercial R&D

● cOMPunity - http://www.compunity.org

● Applications research, i.e., HPC users, etc
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Compiling and Executing Examples

● IBM XL Suite:  

– xlc_r, xlf90, etc

● OpenUH:

● uhcc, uhf90, etc

% xlc_r -qsmp=omp test.c -o test.x   # compile it
% OMP_NUM_THREADS=4 ./test.x         # execute it

% uhcc -mp test.c -o test.x          # compile it
% OMP_NUM_THREADS=4 ./test.x         # execute itbash

bash
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OpenMP Directives & Constructs

● Contained inside of structured comments

C/C++:   

#pragma omp <directive> <clauses>

Fortran: 

!$OMP <directive> <clauses>

● OpenMP compliant compilers fnd and parse directives

● Non-compliant should safely ignore them as comments

● A construct is a directive that afects the enclosing code

● Imperative (standalone) directives exist

● Clauses control the behavior of directives
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The OpenMP “Runtime” Library (RTL)

● The “runtime”  manages the multi-threaded execution:

– It's used by the resulting executable OpenMP program

– It's what spawns threads (e.g., calls pthreads) 

– It's what manages shared & private memory

– It's what distributes (shares) work among threads

– It's what synchronizes threads & tasks

– It's what reduces variables and keeps lastprivate

– It's what is infuenced by envars & the user level API
● http://www2.cs.uh.edu/~estrabd/OpenUH/r593/html-libopenmp/

● __omp_fork(...) call graph

http://www2.cs.uh.edu/~estrabd/OpenUH/r593/html-libopenmp/
http://www2.cs.uh.edu/~estrabd/OpenUH/r593/html-libopenmp/dc/d87/a00032_acb1e4cd1e1a77010203f0ae270c3ace3_cgraph.png
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Useful OpenMP Environmental Variables

● OMP_NUM_THREADS

● OMP_SCHEDULE

● OMP_DYNAMIC

● OMP_STACKSIZE

● OMP_NESTED

● OMP_THREAD_LIMIT

● OMP_MAX_ACTIVE_LEVELS
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3 Types of Runtime Functions

Execution environment routines; e.g.,

– omp_{set,get}_num_threads

– omp_{set,get}_dynamic

– Each envar has a corresponding get/set

Locking routines; e.g.,

– omp_{init,destroy}_{,nest_}lock

– omp_test_{,nest_}lock

– omp_{set,unset}_{,nest_}lock

Timing routines; e.g.,

– omp_get_wtime

– omp_get_wtick
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How Is an OpenMP Program Compiled? Here's How OpenUH does it.

Liao, et. al.: http://www2.cs.uh.edu/~copper/openuh.pdf

http://www2.cs.uh.edu/~copper/openuh.pdf
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What Does the Transformed Code Look like?

● Intermediate code,“W2C”

– uhcc -mp -gnu3 -CLIST:emit_nested_pu simple.c

– http://www2.cs.uh.edu/~estrabd/OpenMP/simple/ 

static void __omprg_main_1(__ompv_gtid_a, __ompv_slink_a)
  _INT32 __ompv_gtid_a;
  _UINT64 __ompv_slink_a;
{
  
  register _INT32 _w2c___comma;
  _UINT64 _temp___slink_sym0;
  _INT32 __ompv_temp_gtid;
  _INT32 __mplocal_my_id;
  
  /*Begin_of_nested_PU(s)*/
  
  _temp___slink_sym0 = __ompv_slink_a;
  __ompv_temp_gtid = __ompv_gtid_a;
  _w2c___comma = omp_get_thread_num();
  __mplocal_my_id = _w2c___comma;
  printf("hello from %d\n", __mplocal_my_id);
  return;
} /* __omprg_main_1 */

#include <stdio.h>
int main() {
  int my_id;
#pragma omp parallel default(none) private(my_id)
  {
    my_id = omp_get_thread_num();
    printf("hello from %d\n",my_id);
  }
  return 0;
}

The original main()

main is outlined to __omprg_main_1()

http://www2.cs.uh.edu/~estrabd/OpenMP/simple/
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The new main()

extern _INT32 main() {
  register _INT32 _w2c___ompv_ok_to_fork;
  register _UINT64 _w2c_reg3;
  register _INT32 _w2c___comma;
  _INT32 my_id;
  _INT32 __ompv_gtid_s1;
  
  /*Begin_of_nested_PU(s)*/
  
  _w2c___ompv_ok_to_fork = 1;
  if(_w2c___ompv_ok_to_fork)
  {
    _w2c___ompv_ok_to_fork = __ompc_can_fork();
  }
  if(_w2c___ompv_ok_to_fork)
  {
    __ompc_fork(0, &__omprg_main_1, _w2c_reg3);
  }
  else
  {
    __ompv_gtid_s1 = __ompc_get_local_thread_num();
    __ompc_serialized_parallel();
    _w2c___comma = omp_get_thread_num();
    my_id = _w2c___comma;
    printf("hello from %d\n", my_id);
    __ompc_end_serialized_parallel();
  }
  return 0;
} /* main */

calls RTL fork and passes
function pointer to outlined 
main()

serial version

__omprg_main_1's 
frame pointer

No body wants to code like this, so let the compiler 
and runtime do most all this tedious work!



  

A Guide to OpenMP

The parallel Construct

● Where the “fork” occurs (__ompc_fork(...))

● Encloses all other OpenMP constructs & directives

● This construct accepts the following clauses: if, 
num_threads, private, firstprivate, shared, 
default, copyin, reduction

● Can call functions that contain “orphan” constructs

– Statically outside of parallel, but lexically inside 
during runtime

● Can be nested
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A Simple OpenMP Example

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
   tid = omp_get_thread_num();
   printf("hi, from %d\n", tid);
#pragma omp barrier
   if ( tid == 0 ) {
     printf("%d threads say hi!\n",numt);
   }
 }
  return 0;
}

C/C++

Output using 4 threads:

hi, from 3
hi, from 0
hi, from 2
hi, from 1
4 threads say hi!

Note, thread order
not guaranteed!

get number of threads

fork

wait for all threads

get thread id

join (implicit barrier, all wait)
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The Fortran Version

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
   tid = omp_get_thread_num();
   printf("hi, from %d\n", tid);
#pragma omp barrier
   if ( tid == 0 ) {
     printf("%d threads say hi!\n",numt);
   }
 }
  return 0;
}

      program hello90
      use omp_lib
      integer:: id, numt
      numt = omp_get_num_threads()
!$omp parallel private(id) shared(numt)
      tid = omp_get_thread_num()   
      write (*,*) 'hi, from', tid
!$omp barrier
      if ( tid == 0 ) then
        write (*,*) numt,'threads say hi!'
      end if
!$omp end parallel
      end program

C/C++ F90

Output using 4 threads:

hi, from 3
hi, from 0
hi, from 2
hi, from 1
4 threads say hi!

Note, thread order
not guaranteed!



  

A Guide to OpenMP

Now, Just the Parallelized Code

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
   tid = omp_get_thread_num();
   printf("hi, from %d\n", tid);
#pragma omp barrier
   if ( tid == 0 ) {
     printf("%d threads say hi!\n",numt);
   }
 }
  return 0;
}}

      program hello90
      use omp_lib
      integer:: id, numt
      numt = omp_get_num_threads()
!$omp parallel private(id) shared(numt)
      tid = omp_get_thread_num()   
      write (*,*) 'hi, from', tid
!$omp barrier
      if ( tid == 0 ) then
        write (*,*) numt,'threads say hi!'
      end if
!$omp end parallel
      end program

C/C++ F90

Output using 4 threads:

hi, from 3
hi, from 0
hi, from 2
hi, from 1
4 threads say hi!

Note, thread order
not guaranteed!
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Trace of The Execution

0 B 0hi, from 0 0 == 0
5 threads say hi!

1 B 1hi, from 1 1 != 0

2 B 2hi, from 2 2 !=0

3 B 3hi, from 3 3 != 0

F J

B = wait for all threads @ barrier before progressing further.

fork

all threads call printf

thread barrier

only thread with 
tid == 0 does this

other threads wait

join
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Controlling the Fork at Runtime

● The “if” clause contains a conditional expression.

● If TRUE, forking occurs, else it doesn't

● The “num_threads” clause is another way to control the 
number of threads active in a parallel contruct

int n = some_func();
#pragma omp parallel if(n>5)
  {
    … do stuff in parallel
  }

int n = some_func();
#pragma omp parallel num_threads(n)
  {
    … do stuff in parallel
  }
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The Data Environment Among Threads

● default([shared]|none|private)

● shared(list,) - supported by parallel construct only

● private(list,)

● firstprivate(list,)

● lastprivate(list,) - supported by loop & sections constructs only

● reduction(<op>:list,)

● copyprivate(list,) - supported by single construct only

● threadprivate - its own directive

#pragma omp threadprivate(list,)

!$omp threadprivate(list,)

● copyin(list,) - supported by parallel construct only
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Private Variable Initialization

● private(list,)

– Initialized value of variable(s) is undefned

● firstprivate(list,)

– Initialized private variables with value at time of fork to the 
master's value

● copyin(list,)

– Initialize private variables with the value of master's list

● threadprivate(list,)

– Provides for the initialized of private variables that are 
treated as global variables inside of each thread

– static variables in C/C++

– COMMON blocks in Fortran
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Getting Data Out

● Variables in list are technically shared
● copyprivate(list,)

– Used by single to pass list to corresponding private vars in 
the other threads

● lastprivate(list,)

– vars in list will be assigned the last value assigned to it 
by a thread

– supported by loop & sections construct

● reduction(<op>:list,)

– aggregates vars in list using the defned operation

– supported by parallel, loop, & sections constructs 

– <op> must be an actual operator or an intrinsic function
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private & shared in that Simple OpenMP Example

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
   tid = omp_get_thread_num();
   printf("hi, from %d\n", tid);
#pragma omp barrier
   if ( tid == 0 ) {
     printf("%d threads say hi!\n",numt);
   }
 }
  return 0;
}

      program hello90
      use omp_lib
      integer:: id, numt
      numt = omp_get_num_threads()
!$omp parallel private(id) shared(numt)
      tid = omp_get_thread_num()   
      write (*,*) 'hi, from', tid
!$omp barrier
      if ( tid == 0 ) then
        write (*,*) numt,'threads say hi!'
      end if
!$omp end parallel
      end program

C/C++ F90

Output using 4 threads:

hi, from 3
hi, from 0
hi, from 2
hi, from 1
4 threads say hi!

Note, thread order
not guaranteed!
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Memory Consistency Model

● OpenMP uses a “relaxed consistency” model

● In contrast to “sequential consistency”

● Cores may have out of date values in their cache

● Most constructs imply a “flush” of each thread's cache

● Treated as a memory “fence” by compilers when it 
comes to reordering operations

● OpenMP provides an explicit fush directive

#pragma flush (list,)

!$OMP FLUSH(list,)



  

A Guide to OpenMP

Synchronization

● Explict sync points are enabled with a barrier:

#pragma omp barrier

!$omp barrier

● Implicit sync points exist at the end of:

– parallel, for, do, sections, single, 
WORKSHARE

● Implicit barriers can be turned of with, “nowait”

● There is no barrier associated with:

– critical, atomic, master

● Explicit barriers must be used if this is required
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An explicit barrier in that Simple OpenMP Example

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
 int tid, numt;
 numt = omp_get_num_threads();
#pragma omp parallel private(tid) shared(numt)
 {
   tid = omp_get_thread_num();
   printf("hi, from %d\n", tid);
#pragma omp barrier
   if ( tid == 0 ) {
     printf("%d threads say hi!\n",numt);
   }
 }
  return 0;
}

      program hello90
      use omp_lib
      integer:: id, numt
      numt = omp_get_num_threads()
!$omp parallel private(id) shared(numt)
      tid = omp_get_thread_num()   
      write (*,*) 'hi, from', tid
!$omp barrier
      if ( tid == 0 ) then
        write (*,*) numt,'threads say hi!'
      end if
!$omp end parallel
      end program

C/C++ F90

Output using 4 threads:

hi, from 3
hi, from 0
hi, from 2
hi, from 1
<barrier>
4 threads say hi!
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Trace of The Execution

0 B 0hi, from 0 0 == 0
5 threads say hi!

1 B 1hi, from 1 1 != 0

2 B 2hi, from 2 2 !=0

3 B 3hi, from 3 3 != 0

F J

B = wait for all threads @ barrier before progressing further.
#pragma omp barrier
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The reduction Clause

● Supported by parallel and worksharing constructs

– parallel, for, do, sections

● Creates a private copy of a shared var for each thread

● At the end of the construct containing the reduction 
clause, all private values are reduced into one using the 
 specifed operator or intrinsic function

#pragma omp parallel reduction(+:i)

!$omp parallel reduction(+:i) 
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Trace of a variable reduction
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Valid Operations for the reduction Clause

● Reduction operations in C/C++:

– Arithmetic: + - * /

– Bitwise:       & ^ |

– Logical:       &&  ||
● Reduction operations in Fortran

– Equivalent arithmetic, bitwise, and logical operations

– min, max
● User defined reductions (UDR) is an area of current research

● Note: initialized value matters!  
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Nested parallel Constructs

● Can be nested, but specifcation makes it optional

– OMP_NESTED={true,false}

– OMP_MAX_ACTIVE_LEVELS={1,2,..}

– omp_{get,set}_nested()

– omp_get_level()

– omp_get_ancestor_thread_num(level)

● Each encountering thread becomes the master of 
the newly forked team

● Each subteam is numbered 0 through N-1

● Useful, but still incurs parallel overheads
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The Uniques of Thread Numbers in Nesting

0

2 1 0

2 1 0 2 1 0 2 1 0

Nest Level 0

Nest Level 1

Nest Level 2

__ompc_fork(..)

__ompc_fork(..) __ompc_fork(..) __ompc_fork(..)
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Work Sharing Constructs

● Threads share work in shared memory.

● OpenMP provides “work sharing” contructs

● These constructions include:

– for, DO

– sections 

– WORKSHARE (Fortran only)
– single, master
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The Loop Constructs: for & DO

● The loop constructs distribute iterations among threads 
according to some schedule (default is static)

● Among frst constructs used when introducing OpenMP

● The clauses supported by the loop constructions are: 
private, firstprivate, lastprivate, reduction, 
schedule, order, collapse, nowait

● The loop's schedule refers to the runtime policy used to 
distribute work among the threads.
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thread 1
i = 34 thru 67

thread 2
i = 68 thru 99

thread 0
i = 0 thru 33

OpenMP Parallelizes Loops by Distributing Iterations to Each Thread

int i;
#pragma omp for
  for (i=0;i <= 99; i++) {
    // do stuff 
  }

for (i=0;i <= 33; i++) {
  // do stuff
}

for (i=34;i <= 67; i++) {
  // do stuff
}

for (i=68;i <= 99; i++) {
  // do stuff
}
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Parallelizing Loops - C/C++

http://developers.sun.com/solaris/articles/studio_openmp.html

#include <stdio.h>
#include <omp.h>
#define N 100

int main(void)
{
 float a[N], b[N], c[N];
 int i;
 omp_set_dynamic(0);           // ensures use of all available threads
 omp_set_num_threads(20);      // sets number of all available threads to 20
/* Initialize arrays a and b. */
 for (i = 0; i < N; i++)
   {
     a[i] = i * 1.0;
     b[i] = i * 2.0;
   }
/* Compute values of array c in parallel. */

#pragma omp parallel shared(a, b, c) private(i)
  { 
#pragma omp for [nowait]
   for (i = 0; i < N; i++)
     c[i] = a[i] + b[i];
   }
 printf ("%f\n", c[10]);
}
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Parallelizing Loops - C/C++

http://developers.sun.com/solaris/articles/studio_openmp.html

#include <stdio.h>
#include <omp.h>
#define N 100

int main(void)
{
 float a[N], b[N], c[N];
 int i;
 omp_set_dynamic(0);           // ensures use of all available threads
 omp_set_num_threads(20);      // sets number of all available threads to 20
/* Initialize arrays a and b. */
 for (i = 0; i < N; i++)
   {
     a[i] = i * 1.0;
     b[i] = i * 2.0;
   }
/* Compute values of array c in parallel. */

#pragma omp parallel shared(a, b, c) private(i)
  { 
#pragma omp for [nowait]
   for (i = 0; i < N; i++)
     c[i] = a[i] + b[i];
  }
 printf ("%f\n", c[10]);
}
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Parallelizing Loops - Fortran

http://developers.sun.com/solaris/articles/studio_openmp.html

      PROGRAM VECTOR_ADD
      USE OMP_LIB
      PARAMETER (N=100)
      INTEGER N, I
      REAL A(N), B(N), C(N)
      CALL MP_SET_DYNAMIC (.FALSE.)  !ensures use of all available threads
      CALL OMP_SET_NUM_THREADS (20)   !sets number of available threads to 20
! Initialize arrays A and B.
      DO I = 1, N
        A(I) = I * 1.0
        B(I) = I * 2.0
      ENDDO
! Compute values of array C in parallel.
!$OMP PARALLEL SHARED(A, B, C), PRIVATE(I) 
!$OMP DO 
      DO I = 1, N
        C(I) = A(I) + B(I)
      ENDDO
!$OMP END DO [nowait]
      ! ... some more instructions
!$OMP END PARALLEL
      PRINT *, C(10)
      END
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Parallelizing Loops - Fortran

http://developers.sun.com/solaris/articles/studio_openmp.html

      PROGRAM VECTOR_ADD
      USE OMP_LIB
      PARAMETER (N=100)
      INTEGER N, I
      REAL A(N), B(N), C(N)
      CALL MP_SET_DYNAMIC (.FALSE.)  !ensures use of all available threads
      CALL OMP_SET_NUM_THREADS (20)   !sets number of available threads to 20
! Initialize arrays A and B.
      DO I = 1, N
        A(I) = I * 1.0
        B(I) = I * 2.0
      ENDDO
! Compute values of array C in parallel.
!$OMP PARALLEL SHARED(A, B, C), PRIVATE(I) 
!$OMP DO 
      DO I = 1, N
        C(I) = A(I) + B(I)
      ENDDO
!$OMP END DO [nowait]
      ! ... some more instructions
!$OMP END PARALLEL
      PRINT *, C(10)
      END
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Parallel Loop Scheduling

● Scheduling refers to how iterations are assigned to a 
particular thread;

● There are 5 types:

– static – each thread is able to calculate its chunk 

– dynamic – frst come, frst serve managed by runtime

– guided – decreasing chunk sizes, increasing work

– auto – determined automatically by compiler or runtime

– runtime – defned by OMP_SCHEDULE or omp_set_schedule

● Limitations

– only one schedule type may be used at for a given loop

– the chunk size applies to all threads
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Parallel Loop Scheduling - Example

!$OMP PARALLEL SHARED(A, B, C) PRIVATE(I) 
!$OMP DO SCHEDULE (DYNAMIC,4) 
      DO I = 1, N
        C(I) = A(I) + B(I)
      ENDDO
!$OMP END DO [nowait]
!$OMP END PARALLEL

#pragma omp parallel shared(a, b, c) private(i)
 { 
#pragma omp for schedule (guided,4) [nowait]
   for (i = 0; i < N; i++)
     c[i] = a[i] + b[i];
 }

Fortran

C/C++

schedule chunk size
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The ordered Clause and ordered construct

● An ordered loop contains code that must execute in 
serial order

● The ordered code must be inside of an ordered 
construct

#pragma omp parallel shared(a, b, c) private(i)
  {
#pragma omp for ordered
    for (i = 0; i <= 99; i++) {
      // do a lot of stuff concurrently
#pragma omp ordered
      { 
        a = i * (b + c);
        b = i * (a + c);
        c = i * (a + b);
      }
    }
  }

ordered clause

ordered construct
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The collapse Clause

● Specifes how many loop levels are to be associated 
with the loop construct

● The n levels are collapsed into a combined iteration 
space

● The schedule applies the entire iteration space as usual

#pragma omp parallel shared(a, b, c) private(i)
  {
#pragma omp for schedule(dynamic,4) collapse(2)
    for (i = 0; i <= 99; i++) {
      for (j = i; j <= 99; j++) {
        // do stuff for each i,j   
      }
  }
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The WORKSHARE Construct (Fortran Only)

● Provides for parallel execution of code using F90 array 
syntax

● The clauses supported by the WORKSHARE construct are: 
private, firstprivate, copyprivate, nowait

● There is an implicit barrier at the end of this construct

● Valid Fortran code enclosed in a workshare construct:

– Array & scalar variable assignments

– FORALL statements & constructs

– WHERE statements & constructs

– User defned functions of type ELEMENTAL

– OpenMP atomic, critical, & parallel
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The sections Construct

● The sections construct defnes code that is to be 
executed once by exactly one thread

● A barrier is implied

● Supported clauses include: private, firstprivate, 
lastprivate, reduction, nowait
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#include <stdio.h>
#include <omp.h>

int square(int n){
  return n*n; 
}

int main(void){
 int x, y, z, xs, ys, zs;
 omp_set_dynamic(0);
 omp_set_num_threads(3);
 x = 2; y = 3; z = 5;

#pragma omp parallel 
 {
#pragma omp sections
  {
#pragma omp section
     { xs = square(x);
       printf ("id = %d, xs = %d\n", omp_get_thread_num(), xs);
     } 
#pragma omp section
     { ys = square(y);
       printf ("id = %d, ys = %d\n", omp_get_thread_num(), ys);
     }
#pragma omp section
     { zs = square(z);
       printf ("id = %d, zs = %d\n", omp_get_thread_num(), zs);
     }
   }
 }
  return 0;
}

A section Construct Example

http://developers.sun.com/solaris/articles/studio_openmp.h
tml
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A section Construct Example

#pragma omp sections
  {
#pragma omp section
     { xs = square(x);
       printf ("id = %d, xs = %d\n", omp_get_thread_num(), xs);
     } 
#pragma omp section
     { ys = square(y);
       printf ("id = %d, ys = %d\n", omp_get_thread_num(), ys);
     }
#pragma omp section
     { zs = square(z);
       printf ("id = %d, zs = %d\n", omp_get_thread_num(), zs);
     }
  }

thread 0

thread 1

thread 2

Time

t=0 t=1
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Combined parallel Constructs

● parallel may be combined with the following:

– parallel, for, do, sections, WORKSHARE

● Semantics are identical to usage already discussed

#pragma omp parallel for shared(a, b, c) private(i) schedule (guided,4)
 { 
   for (i = 0; i < N; i++)
     c[i] = a[i] + b[i];
 }

!$OMP PARALLEL DO SHARED(A, B, C) PRIVATE(I) 
!$OMP& SCHEDULE(DYNAMIC,4) 
      DO I = 1, N
        C(I) = A(I) + B(I)
      ENDDO
!$OMP END PARALLEL DO
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Singling Out Threads with master and single Constructs

● Code inside of A master construct will only be executed by the master 
thread.

● There is NO implicit barrier associated with master; other threads ignore it.

● Code inside of a single construct will be executed by the frst thread to 
encounter it.

● A single construct contains an implicit barrier that will respect nowait.

!$OMP MASTER                
  … do stuff                  
!$OMP END MASTER 

!$OMP SINGLE                
  … do stuff                  
!$OMP END SINGLE [nowait] 
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The task Construct

● Tasks were added in 3.0 to handle dynamic and 
unstructured applications

– Recursion

– Tree & graph traversals
● OpenMP's execution model based on threads was 

redefned

● A thread is considered to be an implicit task

● The task construct defnes singular tasks explicitly

● Less overhead than nested parallel regions
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Threads are now Implicit Tasks

process 3

Main Memory
process 0

cpu 1

cpu 2

cpu 3

cpu 0 Implicit task 0

Implicit task 1

Implicit task 2

Implicit task 3

p0
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The task Construct

● Clauses supported are: if, default, private, 
firstprivate shared, tied/untied

● By default, all variables are firstprivate

● Tasks can be nested syntactically, but are still 
asynchronous

● The taskwait directive causes a task to wait until all its 
children have completed
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Each Thread Conceptually Has Both a tied & untied queue

process 3

Main Memory

cpu 1

cpu 2

cpu 3

cpu 0 Implicit task 0

Implicit task 1

Implicit task 2

Implicit task 3

p0
tied (private)

untied (public)

tied (private)

untied (public)

tied (private)

untied (public)

tied (private)

untied (public)
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A task Construct C/C++ Example

struct node {
  struct node *left;
  struct node *right;
};

extern void process(struct node *);

void traverse( struct node *p ) {
  if (p->left)
#pragma omp task // p is firstprivate by default
    traverse(p->left);
  if (p->right)
#pragma omp task // p is firstprivate by default
    traverse(p->right);
  process(p);
}
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A task Construct Fortran Example

      RECURSIVE SUBROUTINE traverse ( P )
        TYPE Node
          TYPE(Node), POINTER :: left, right
        END TYPE Node
        TYPE(Node) :: P
        IF (associated(P%left)) THEN
!$OMP TASK ! P is firstprivate by default
          call traverse(P%left)
!$OMP END TASK
        ENDIF
        IF (associated(P%right)) THEN
!$OMP TASK ! P is firstprivate by default
          call traverse(P%right)
!$OMP END TASK
        ENDIF
        CALL process ( P )
END SUBROUTINE
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Mutual Exclusion: critical, atomic, and omp_lock_t

● Some code must be executed by one thread at a time

● Efectively serializes the threads

● Also called critical sections

● OpenMP provides 3 ways to achieve mutual exclusion

– The critical construct encloses a critical 
section

– The atomic construct enclose updates to shared 
variables

– A low level, general purpose locking mechanism
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The critical Construct

#pragma omp parallel
  {
#pragma omp critical
    { 
      // some code
    }
  }

● The critical construct enclose code that should be 
executed by all threads, just in some serial order

● The efect is equivalent to a lock protecting the code
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A critical Construct Example

#pragma omp parallel shared(a, b, c) private(i)
  { 
#pragma omp critical
    { 
      //
      // do stuff (one thread at a time)
      //
    }
  }

thread 1 thread 0 thread 2

t = 0 t = 1 t = 2

Time
Note:
Encountering thread
order not gauranteed!
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The Named critical Construct

● Names may be applied to critical constructs.

● The efect is equivalent to using a diferent lock for 
each section.

#pragma omp parallel
  {
#pragma omp critical(a)
    { 
      // some code
    }
#pragma omp critical(b)
    { 
      // some code
    }
#pragma omp critical(c)
    { 
      // some code
    }
  }
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A Named critical Construct Example

#include <stdio.h>
#include <omp.h>
#define N 100

int main(void)
{ float a[N], b[N], c[3];
  int i;
  /* Initialize arrays a and b. */
   for (i = 0; i < N; i++)
     { a[i] = i * 1.0 + 1.0;
       b[i] = i * 2.0 + 2.0;
     }
  /* Compute values of array c in parallel. */
#pragma omp parallel shared(a, b, c) private(i)
  {
#pragma omp critical(a)
    { for (i = 0; i < N; i++)
          C[ 0] += a[i] + b[i];
      printf("%f\n",c[0]);
    }
#pragma omp critical(b)
    { for (i = 0; i < N; i++)
          c[1] += a[i] + b[i];
      printf("%f\n",c[1]);
    }
#pragma omp critical(c)
    { for (i = 0; i < N; i++)
         c[2] += a[i] + b[i];
      printf("%f\n",c[2]);
    }
  }
}
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A Named critical Construct Example 

#pragma omp critical(a)
    { 
      // some code
    }
#pragma omp critical(b)
    { 
      // some code
    }
#pragma omp critical(c)
    { 
      // some code
    }

thread 1

t = 0

Time

Note:
Encountering thread
order not gauranteed!

thread 0

t = 1

thread 2

t = 2

thread 1 thread 0

thread 1

t = 3

thread 2

thread 0

t = 1

thread 2
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The atomic Construct for Safely Updating Shared Variables

#include <stdio.h>
#include <omp.h>

int main(void) {
  int count = 0;
#pragma omp parallel shared(count)
  {
 #pragma omp atomic
      count++;
  }
  printf("Number of threads: %d\n",count);
}

Note:
Encountering thread
order not gauranteed!

● Protected writes to shared variables

● Lighter weight than using a critical contruct
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Locks in OpenMP

● omp_lock_t, omp_lock_kind

● Threads set/unset locks

● Nested locks can be set multiple times by the same 
thread before releasing them

● More fexible than critical construct
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Using Locks in OpenMP

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

int main()
{
  int x;
  omp_lock_t lck;
  omp_init_lock (&lck);
  omp_set_lock (&lck);
  x = 0;
#pragma omp parallel shared (x)
  {
#pragma omp master
    {
      x = x + 1;
      omp_unset_lock (&lck);
    }
/* Some more stuff. */
  }
  omp_destroy_lock (&lck);
}
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Using Nested Locks in OpenMP

#include <omp.h>
typedef struct {
  int a,b; omp_nest_lock_t lck; } pair;
int work1();
int work2();
int work3();

void incr_a(pair *p, int a) {
  /* Called only from incr_pair, no need to lock. */
  p->a += a;
}
void incr_b(pair *p, int b) {
  /* Called both from incr_pair and elsewhere, */
  /* so need a nestable lock. */
  omp_set_nest_lock(&p->lck);
  p->b += b;
  omp_unset_nest_lock(&p->lck);
}

void incr_pair(pair *p, int a, int b) {
  omp_set_nest_lock(&p->lck);
  incr_a(p, a);
  incr_b(p, b);
  omp_unset_nest_lock(&p->lck);
}

void a45(pair *p) {
#pragma omp parallel sections
  {
#pragma omp section
    incr_pair(p, work1(), work2());
#pragma omp section
    incr_b(p, work3());
  }
}
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Fortran Programming Tips

● In fxed form Fortran OpenMP directives can hide behind 
the following “sentinals”

!$[OMP],c$[OMP],*$[OMP]
● Free form requires “!$”

● Sentinals can enable conditional compilation

!$ omp_set_num_threads(n)
● Fortran directives should start in column 0

● Long directive continuations take a form similar to:

!$OMP PARALLEL DEFAULT(NONE) 
!$OMP& SHARED(INP,OUTP,BOXL,TEMP,RHO,NSTEP,TSTEP,X,Y,Z,VX,VY,VZ,BOXL)
!$OMP& SHARED(XO,YO,ZO,TSTEP,V2T,VXT,VYT,VZT,IPRINT,ISTEP,ETOT,ERUN) 
!$OMP& SHARED(FX,FY,FZ,PENER)
!$OMP& PRIVATE(I)
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C/C++ Programming Tips

● No line continuations, entire directive on single line

● No conditional compilation sentinals, use “#ifdef”, etc

● Coding style
int main () {
  ...
#pragma parallel
  {
#pragma omp sections
    {
#pragma omp section
      { xs = square(x);
        printf ("id = %d, xs = %d\n", omp_get_thread_num(), xs);
      } 
#pragma omp section
      { ys = square(y);
        printf ("id = %d, ys = %d\n", omp_get_thread_num(), ys);
      }
    }
  }
  return 0; /* end main */
}

all #pragmas in 
col. 0

braces indented 
as usual
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General Programming Tips

● Minimize parallel constructs

● Use combined constructs, if it doesn't violate the above

● Minimize shared variables, maximize private

● Minimize barriers, but don't sacrifce safety

● When inserting OpenMP into existing code

– Use a disciplined, iterative cycle – test against serial 
version

– Use barriers liberally

– Optimize OpenMP & asynchronize last

● When starting from scratch

– Start with an optimized serial version
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OpenMP Idioms

● Won't cover directly, but they exist for:

● Pipelining computations

● Efectively using I/O (especially in a pipelined context)

● Creating user defned reductions (UDR) (e.g., for divide 
& conquer algorithms, map-reduce type applications)

● Interleaving N units of critical work with M threads to 
minimize idle time

● Efective use of nested parallelism and tasks for 
unbalanced and dynamical work loads

● ...many more 
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Other Issues Not Covered Directly

● Profling & optimizations

● Debugging & troubleshooting techniques

● Real world OpenMP

● OpenMP in hybrid contexts
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The Future of OpenMP

● It's not going anywhere; vendor buy-in is as strong as ever

● Big 3:

Refnement to tasking model (scheduling, etc)

– Error handling

– Accelerators

● Scaling

– Thousands of threads

– Data locality

– More efcient synchronization constructs & 
implementations

● Remaining relevant
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Additional Resources

● http://www.cs.uh.edu/~hpctools

● http://www.compunity.org

● http://www.openmp.org

– Specifcation 3.0

● “Using OpenMP”, Chapman, et. al.

Covers through 2.5

http://www.cs.uh.edu/~hpctools
http://www.compunity.org/
http://www.openmp.org/
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