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Disconnect and OPT (f, c) = minx∈Rn {f(x) : c(x) ≤ 0}

Gap between science, formulated problem, and algorithmic
solution

⋄ “Solving OPT (f, c) results in overfitting.”

⋄ “Solution to OPT (f, c) must be post-processed.”

⋄ “What is OPT (f, c)? I just have an algorithm that gives me the
solution.”

⋄ “I can’t solve the science, but I can solve OPT (f, c).”

⋄ “I don’t know how to solve OPT (f, c) on a (large) cluster.”
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⋄ “Solving OPT (f, c) results in overfitting.”

⋄ “Solution to OPT (f, c) must be post-processed.”

⋄ “What is OPT (f, c)? I just have an algorithm that gives me the
solution.”

⋄ “I can’t solve the science, but I can solve OPT (f, c).”

⋄ “I don’t know how to solve OPT (f, c) on a (large) cluster.”

I will not close this gap!

⋄ Initial examples on (nonlinear) continuous-discrete-mixed numerical/math
optimization for data analysis (many [,better] others)

⋄ Experimental data
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Part 1:
Elemental Maps



Multi-Dim. Imaging in X-ray Fluorescence Microscopy

Science challenges in Nano-medicine and Theranostics

⋄ Design new treatment and drugs for targeted drug delivery

⋄ Combine therapy and diagnostics by targeting nanoparticles at cancer

⋄ Extract efficiency score from multiple sources of data (instruments)

� X-ray, fluorescent, and visible light images
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Manually Finding Cells is Difficult*

CScADS 12 4



Manually Finding Cells is Difficult*

red blood cells
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Manually Finding Cells is Difficult*

algae cells
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Manually Finding Cells is Difficult*

yeast cells
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Challenges and Goals

Accurate statistics/recognition of hundreds of cells and elemental distributions
within regions of interest

1. Lack of manual annotations

2. Nonuniformity of cells/noise/background

A first task: Data reduction

⋄ Raw energy channel maps → elemental maps

⋄ People only look at a handful of “elements” rather than 2000 channels

Xe,p number of photons arriving at location p, range of energies around e

X non-negative energy channel × pixel matrix (think: 103 × 107)
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2D (Channel-Pixel) Optimization Approaches (I)

Unconstrained low-rank approximation

min

{

∥

∥

∥X −WH
T
∥

∥

∥

2

F
: W ∈ R

m×k
,H ∈ R

k×n

}

⋄ k ≪ min(m,n) known

⋄ X̃ =
k
∑

i=1

WiH
T
i

⋄ W = channel basis

⋄ H = pixel basis

⋄ Solved by SVD (unknown W and

H)

� W1,H1 non-negative
� Wi,Hi mixed signs for i > 1
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2D (Channel-Pixel) Optimization Approaches (II)

Constrained approximation

min

{

∥

∥

∥X −WH
T
∥

∥

∥

2

F
: W ∈ R

m×k
,H ∈ R

k×n
,W ≥ 0,H ≥ 0

}

Non-negative matrix factorization
(NMF)

⋄ W = channel basis

⋄ H = pixel basis

⋄ Preserve structure and
approximation

⋄ Multiplicative update algorithms

� Wi,j ← Wi,j
(XH)i,j

(W (HT H))i,j

� Hj,i ← Hj,i
(WT X)i,j

((WT W )HT )i,j

⋄ Other formulations (nnz(W ) ≤ θ)
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P

Cu

Zn

× ≈
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Revealing Latent Structure Through NMF

⋄ Non-negative output compatible with intuitive psychological and
physiological evidence

⋄ Reconstruction through additive combination of nonnegative Wi,j yields∗

sparse, parts-based representation

Applications

Natural language processing

⋄ Sparsity helps! Bag-of-words

⋄ Latent Dirichlet allocation,
semantic role labeling, K-L
divergence,. . .

Face recognition/image clustering

⋄ Reveal noses, lips, eyes, . . .

⋄ [Lee & Seung, Nature 1999]

DNA microarray
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No Silver Bullet

Challenges/Drawbacks of NMF

⋄ Unique parts-based representation only under specific conditions (e.g.,
separable complete factorial family [Donoho et al. 2003]).

⋄ Initialization directly impacts the quality of its output

⋄ Challenging objective functions (nonlinear, nonconvex, . . . )

⋄ Many local minima

⋄ Expert/modeler needs to specify goals

� Sparse features?
� Accurate approximation?
� Labeled/semi-supervised data?
� Features corresponding to elements?
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Incorporating The Science: Basis Initialization
⋄ Gaussian distributions describing reference elements via an “element

signature”

⋄ Gaussians at Kα1
, Kα2

, Kβ1
for elements of interest
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Incorporating The Science: Basis Initialization
⋄ Gaussian distributions describing reference elements via an “element

signature”

⋄ Gaussians at Kα1
, Kα2

, Kβ1
for elements of interest
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Weight Image HS Associated With S Basis

Previous fitting Square initialization Gaussian initialization
(iter=1000) (iter=100)

1 hour 1.5 minutes 10 seconds

CScADS 12 11



Multi-Channel Images Corresponding to Chemical Elements

Ca Cl Cu Fe

K P S TFY

Zn s s s

+ Sufficient for many users/groups

− Initial step to ultimate cell identification/classification goals

− Neglects spatial attributes of pixels

CScADS 12 12



Part 2:
Finding Cells



Identifying Cells in Images

⋄ Cells have different sizes and shapes

⋄ Images are noisy, potentially large (O(107) pixels)

Zn map with more than 500 cells
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Graph Partitioning Approaches

⋄ Build an undirected graph G = (V,E)

from the image

� v ∈ V corresponds to a pixel or a
small region

� euv ∈ E connects u and v with
weight wuv

⋄ Connectivity: connect local pixels

(k-nearest neighbors or r-neighborhood)

� wuv large for pixels within a group,
small for pixels in different groups

Goal: Partition the graph into disjoint partitions
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Discrete Optimization and 2-way Graph Partitioning

Minimum weight cut

min







Cut(A, Ā) =
∑

u∈A,v∈Ā

wuv : A ∪ Ā = V, A ∩ Ā = ∅, A 6= ∅, Ā 6= ∅







+ Efficient combinatorial algorithms exist

− Often favors unbalanced cuts
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Discrete Optimization and 2-way Graph Partitioning

Minimum weight cut

min







Cut(A, Ā) =
∑

u∈A,v∈Ā

wuv : A ∪ Ā = V, A ∩ Ā = ∅, A 6= ∅, Ā 6= ∅







+ Efficient combinatorial algorithms exist

− Often favors unbalanced cuts

To obtain balanced cuts

RatioCut(A, Ā) =
Cut(A, Ā)

|A|
+

Cut(A, Ā)

|Ā|

NormalizedCut(A, Ā) =
Cut(A, Ā)

vol(A)
+

Cut(A, Ā)

vol(Ā)

− Minimizing these objectives is hard
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Spectral Relaxations

Cut(A, Ā) = 1
2
zTLz, where zi =

{

1 if i ∈ A,

0 otherwise.

RatioCut(A, Ā) = zT Lz
zT z

, where zi =

{

|Ā|
|A|

if i ∈ A,

− |A|

|Ā|
otherwise.

NormalizedCut(A, Ā) = zTLz
zT Dz

, where zi =







√

vol(Ā)
vol(A)

if i ∈ A,

−
√

vol(A)

vol(Ā)
otherwise

L = D −W ; W = adjacency matrix; Dii =
∑

j wij
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Relax z ∈ {0, 1} to have real values

⋄ Solve for the eigenvector associated with the 2nd smallest eigenvalue of

RatioCut Lz = λz

NormalizedCut (generalized eigenproblem) Lz = λDz

• eigenvector y of the normalized graph Laplacian
L = I −D−1/2WD−1/2, then take z = D−1/2y

[Luxburg, “A tutorial on spectral clustering,” 2007]
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Recursive (k-Way) Segmentation Results

Small Images:

Original image

k-means

Normalized cut
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Multi-level Graph Partitioning

For big images (106+ pixels), solve an approximation of spectral graph
partitioning

⋄ Coarsen graph to desired level, then partition graph

⋄ Iteratively refine the cuts in finer levels

Coarse step: use big Laplacian of Gaussian filter
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Multi-level Graph Partitioning

For big images (106+ pixels), solve an approximation of spectral graph
partitioning

⋄ Coarsen graph to desired level, then partition graph

⋄ Iteratively refine the cuts in finer levels

Fine step: use small Laplacian of Gaussian filter

CScADS 12 19



Merging Oversegmented Regions
Merge small/disconnected regions into larger regions

1. Based on edges/boundary between two regions using

� Gradient map or Canny edge detector
� Image space instead of graph weights
� Heuristics (Greedy, max-matching, . . . )

2. Using content-based measures
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Part 3:
Delineating Cells



Cell Content-Based Optimization

(Mixed-Integer?) Nonlinear Optimization

⋄ Allow for overlapped cells

� Nonuniform sizes, shapes
� Relatively consistent content

⋄ Identify cells numbers/types/boundaries

min
θ

{

∑

c,t

(

fc,t,shape(θ) + λfc,t,content(θ)
)

: fc,t,content(θ) ∈ Ct

}

θ parameterize cell curves (e.g., wavelets)

λ balancing objectives (optional)

Ct hard bounds on content for type t
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Steps Toward Cell Delineation

⋄ Nonuniform background/noise
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Steps Toward Cell Delineation

⋄ Nonuniform background/noise

⋄ Background estimation is local

⋄ Hierarchical statistical test
identifies number of cells of
each type within relaxed regions
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Steps Toward Cell Delineation

⋄ Nonuniform background/noise

⋄ Background estimation is local

⋄ Hierarchical statistical test
identifies number of cells of
each type within relaxed regions

⋄ Cells overlap (additive
contributions)

⋄ Cellular content preserved
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Part 4:
Automatic Performance I/O?
Tuning



Automating Performance Tuning

Given semantically equivalent codes
C1, C2, . . ., minimize “run time”
subject to “energy consumption”

min {f(x) : (xC, xI , xB) ∈ ΩC × ΩI × ΩB}

x multidimensional parameterization (compiler type, compiler flags,
unroll/tiling factors, internal tolerances, . . . )

Ω search domain (feasible transformation, no errors)

f quantifiable performance objective (requires a run/model)
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Optimization for Automatic Tuning of HPC Codes

Evaluation of f requires: transforming source, compilation, (repeated?)
execution, checking for correctness
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Challenges:

- Evaluating f(Ω) prohibitively
expensive (1019)

- f noisy

- Discrete x unrelaxable

- ∇xf unavailable/nonexistent

- Many distinct/local solutions

→ Same problems for I/O tuning? ←
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Goal: Fast Optimizations in Short Search Times

gemver; |D| = 1.41× 1023; 100 evaluations

[Balaprakash et al. VECPAR ’12]
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Closing Thoughts & Acknowledgments

Lingering Gaps (Science, Algorithms, Visualization, Data
Stack)

⋄ Problem formulation is crucial

⋄ Algorithm-Data-Storage interface crucial

⋄ Resource allocation (viz cluster, in situ, . . . ) drives selection of
optimization tools

C. Jacobsen, S. Leyffer, S. Vogt, S. Wang, J. Ward, +
others

T. Ngo

AUTOTUNING P. Balaprakash, P. Hovland, B. Norris, and others

Always collecting problems: → www.mcs.anl.gov/~wild
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