Personal tools
You are here: Home Publications A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures
Document Actions

Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra (2007)

A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures

Parallel Computing.

As multicore systems continue to gain ground in the High Performance Computing world, linear algebra algorithms have to be re-formulated or new algorithms have to be developed in order to take advantage of the architectural features on these new processors. Fine grain parallelism becomes a major requirement and introduces the necessity of loose synchronization in the parallel execution of an operation. This paper presents an algorithm for the Cholesky, LU and QR factorization where the operations can be represented as a sequence of small tasks that operate on square blocks of data. These tasks can be dynamically scheduled for execution based on the dependencies among them and on the availability of computational resources. This may result in an out of order execution of the tasks which will completely hide the presence of intrinsically sequential tasks in the factorization. Performance comparisons are presented with the LAPACK algorithms where parallelism can only be exploited at the level of the BLAS operations and vendor implementations.

by admin last modified 2008-04-17 11:08
« April 2018 »
Su Mo Tu We Th Fr Sa
1234567
891011121314
15161718192021
22232425262728
2930
 

Powered by Plone

CScADS Collaborators include:

Rice University ANL UCB UTK WISC